Curtins | Building a better future

Rigifa, Thurso

Phase 2 Ground Investigation Report

Curtins Ref: 085449-CUR-00-XX-RP-GE-00002

Revision: P03

Issue Date: 20 September 2024

Client Name: Field

Client Address: Fora Montacute Yards, 186 Shoreditch High Street, London E1 6HU

Site Address: Rigifa, Thurso, KW14 8XH

Curtins 51-55 Tithebarn Street Liverpool L2 2SB Tel: 0151 726 2000 www.curtins.com

Control Sheet

Rev	Description	Checked	Issued	Date
P01	Draft for Comment	MTL	MTL	20/09/2024
P02	Comments Addressed	LP	ML	11/07/2024
P03	Comments Addressed	CD	MTL	20/9/24

This report has been prepared for the sole benefit, use, and information for the client. The liability of Curtins Consulting Limited with respect to the information contained in the report will not extend to any third party.

Author	Signature	Date
		20/09/2024
Senior Geo-Environmental Engineer		

Reviewed & Authorised	Signature	Date
Associate		20/09/2024
Principal Geotechnical Engineer		16/04/2024
Geotechnical Engineer		11/07/2024

Phase 2 Ground Investigation Report

Contents

1.0	Introduction	1
1.1	Project Background	1
1.2	Scope of Services	1
2.0	Site Setting	3
2.1	Current Setting	3
2.2	Surrounding Land Use	4
2.3	Site History	4
2.4	Geology, Hydrogeology and Hydrology	4
2.5	Unexploded Ordnance (UXO) Risk Assessment	5
3.0	Initial Conceptual Site Model	6
4.0	Fieldworks	2
4.1	General	2
4.2	Soil Logging and Sampling	3
4.3	Monitoring Well Installations	4
4.4	Post Investigation Monitoring	4
5.0	In-Situ & Laboratory Testing	5
5.1	Environmental Chemical Testing	5
5.2	Geotechnical Testing	6
6.0	Ground Conditions	7
6.1	Encountered Ground Conditions	7
6.2	,	
6.3	Obstructions Encountered	10
6.4		
6.5		
7.0	Ground and Groundwater Contamination Risk Assessment	
7.1		12
7.2		
7.3	Ground Gas – GQRA	15
7.4		
8.0	Revised Conceptual Site Model	
9.0	Preliminary Geotechnical Assessment	
9.1		
9.2	Earthworks	20
9.3	Foundation Design	21

Phase 2 Ground Investigation Report

9.4	Groundwater and Excavations	22
9.5	Hardstanding Design	23
9.6	Drainage	24
10.0	Conclusions	25
10.1	Conclusions	25
10.2	Recommendations	26
11.0	References	27
12.0	Appendices	28

Appendices

Appendix A – Drawings

Appendix B – Borehole Logs

Appendix C – Laboratory Testing Results

Appendix D - Groundwater/Gas Monitoring

Appendix E – Qualitative Risk Assessment Rationale

Executive Summary

-xecative Gainin			
Appointment	Curtins was instructed by Field, to undertake an intrusive Phase 2 Ground Investigation for the development of a 200-megawatt (MW) battery energy storage system (BESS) and associated infrastructure in Rigifa, Thurso KW14 8XH (the Proposed Development).		
Current Site Status	The overall planning boundary comprises an area of 37.87 hectares (ha) which includes access roads, the planned Gills Bay substation site and additional areas for landscaping and drainage. Intrusive ground investigations (GI), and the subject of this report, has been limited to a 10.93 ha area within which excavation and ground reforming works are required, i.e. the BESS and substation compounds (referred to herein as the Site). The 10.93 ha Site is situated on a vacant field, currently used for agricultural purposes and consisting of open fields. The Site peaks in the centre of the Site before dropping in altitude to the north and to the south. The Site is centred on National Grid Reference (NGR) 329401, 971053.		
Site History	With reference to the Curtins Phase 1 report, the earliest available mapping dating back to 1877 shows that the Site is a farmer's field with a sheepfold in the southwest of the Site. Between 1877 and 2023, minimal changes are shown on historical mapping of the Site with the exception of the sheepfold noted as a sheep dip in 1968. The sheep dip is no longer shown on the 2001 mapping. Beyond the Site boundary, the surrounding area is shown as farmland and woodland, with three quarries within 250 m of the Site boundary shown on historical mapping from 1907. By 1968 the three quarries are no longer identified as quarries on historical mapping. Instead, the extents of excavation for the two quarries to the west are shown (approximately 60 m and 75 m to the west of the Site), and the southern quarry is shown as a pond.		
Ground Investigation	 GI was undertaken in February 2024 and consisted of: 7 No. Window Sample Boreholes. 26 No. Machine Excavated Trial Pits. One Hand Excavated Trial Pit. Two In Situ Soakaway Tests. Two In Situ Lightweight Deflectometer CBR Tests. Chemical and Geotechnical laboratory analysis of samples retrieved from intrusive locations. Three rounds of gas and groundwater monitoring undertaken over a six week period. 		
Geology	The British Geological Society records indicate that the site is underlain by superficial deposits identified as the Devensian Till and comprising Diamicton. The superficial deposits are in turn underlain by bedrock deposits from the Spittal Flagstone Formation comprising of siltstone, mudstone and sandstone. Gl undertaken in February 2024 confirmed a typical sequence of topsoil underlain by superficial deposits of slightly gravelly sandy CLAY, underlain by weak grey Flagstone. Rockhead is recorded as relatively shallow across the Site,		
Hydrogeology	Details on the hydrogeological classification of the Devensian Till are not given by SEPA mapping, although groundwater within the superficial deposits is likely to be limited due to the cohesive nature of the clay. The Spittal Flagstone Formation is characterised as a moderately productive aquifer, locally yielding small amounts of groundwater.		

	Groundwater seepages were encountered during the GI but no groundwater was encountered in the boreholes during the monitoring period.		
Generic Qualitative Assessment	Samples taken from GI were sent for chemical analysis at a laboratory. No detections of contaminants in exceedance of appropriate screening criteria were encountered. As such the risk to human health and the water environment from contaminants in soils is considered Low. Gas monitoring indicated minimal elevations of ground gas within monitoring installations. As such risk to future Site users from ground gas is considered Low.		
Geotechnical Considerations	 Samples taken from GI locations were sent to a laboratory for geotechnical analysis. Results indicate: Superficial soils on Site are considered Class 1A or 2C as per Highways Specification 600 Series (SHW) subject to further geotechnical testing. Weathered Flagstone is considered a suitable founding stratum for shallow pad foundations with a conservative allowable bearing capacity of 150 kN/m² Should a raft solution be adopted, assuming a low volume change potential in the Glacial Till, 750 mm of Class 6F2/6F5 should be placed below the raft. All fill should be placed to an earthworks specification and a detailed settlement assessment should be undertaken to determine the material parameters required for the fill and to detail the compaction requirements, to ensure settlements are not excessive A conservative CBR value of 2.5% is recommended for preliminary designs. Further in-situ CBR testing should be undertaken at formation level where hardstanding is proposed to confirm the CBR value used in preliminary design Soakaway type drainage is not recommended on the Site due to the cohesive nature of the glacial till. 		
Conclusions and Recommendations	The environmental chemistry soil results have been compared with the Generic Assessment Criteria (GAC) for soils with respect to human health against "commercial" land use thresholds. The results of the environmental testing did not record any exceedances of contaminants above the adopted GACs nor the presence of asbestos and elevated concentrations of organochlorides. The contamination risk to controlled waters, both groundwater and surface water, is considered to be Low. The risk to end users from ground gases was considered to be Low. A review of the ground gas risk highlights no ground gas protection measures are required for the Site, however the BGS Radon Mapping confirms that the site in a moderate probability radon area where less than 5-10% of homes are estimated to be at or above the action level. Therefore basic radon protective measures are necessary in the construction of any enclosed spaces. If the new development incorporates a basement the advice of a specialist Radon assessor must be obtained. The bedrock underlying the Site is considered a suitable founding stratum due to the shallow depth beneath existing ground level and an estimated allowable bearing capacity of 150kPa for a 1.5m x 1.5m pad foundation at a minimum depth of 1.1m bgl. For a proposed raft foundation, a minimum 750 mm of Class 6F2/6F5 granular fill would need to be placed beneath the slab (assuming a low volume change potential within the Cohesive Glacial Till) with Class 2 general fill placed down to the weathered bedrock of the Spital Flagstone Formation. All fill materials should be placed and compacted to an earthworks specification. N.B. the low volume		

change potential described above is based on engineering judgement in this area of Scotland including investigations in similar over consolidated glacial till soils and descriptions of the soil but is subject to receipt of further testing. A detailed settlement assessment should also be undertaken to confirm the material parameters required for the fill, compaction requirements, the appropriate thickness of Class 6F2/6F5 granular fill beneath the raft and to ensure settlements are not excessive

The preliminary in-situ soakaway tests carried out as part of the site investigation works indicated poor infiltration characteristics of the underlying glacial deposits being unsuitable for soakaway infiltration. It is recommended that if soakaway infiltration is proposed as part of the Proposed Development (for example within the bedrock soils), confirmatory soakage testing is undertaken at the specific intended soakaway locations and mimicking the proposed volumes/depths, once the drainage design is finalised.

At this stage, based on the CBR results carried out and where near surface natural soils are encountered at road pavement formation levels, a CBR of <2.5% can be assumed and full road capping should be allowed for to mitigate total and differential settlements. Further in-situ CBR testing should be undertaken at formation level where hardstanding is proposed to confirm the CBR value used in preliminary design.

In light of the ground investigation undertaken to date across the Site, the following recommendations are made:

- No further works are considered necessary and based on this information a remediation strategy is not considered necessary.
- The BGS Geoindex and UK Radon Mapping confirms the site is situated in a low probability radon area where 5-10% of homes are estimated to be at or above the action level. Therefore, basic radon protective measures are necessary in the event of the construction of enclosed spaces. Whilst no basement is included as part of the Proposed Development, if a basement is required, the advice of a specialist Radon assessor must be obtained.
- Earthworks to be undertaken to Earthworks specification and detailed settlement assessment likely to be required for a raft foundation solution.

1.0 Introduction

1.1 Project Background

Curtins was instructed by Field to undertake a Phase 2 Site Investigation for the development of a battery energy storage system (BESS) with a capacity of up to 200 megawatts (MW) and associated infrastructure at Rigifa, Thurso KW14 8XH (the Proposed Development). The Proposed Development would charge and discharge electricity via the planned and consented Gills Bay substation. The Proposed Development principally comprises:

- · Battery storage units arranged into rows;
- Medium-voltage (MV) skids and ancillary low-voltage (LV) equipment;
- High-voltage (HV) grid transformers;
- · Air insulated switchgear;
- A substation building comprising welfare facilities, a switch room and control room;
- An interface substation and underground 132 kV grid connection cable; and
- Site-wide supporting infrastructure including cabling, access tracks, fencing, attenuation basins, and landscaping measures.

The site layout associated with the Proposed Development is included in Appendix A.

Curtins previously provided a Phase 1 Preliminary Risk Assessment (ref. 085444-CUR-XX-XX-RP-GE-0001) (1) for the Proposed Development which recommended a Phase 2 ground investigation to further determine the contamination risk on-site and support the geotechnical design of the structure.

1.2 Scope of Services

The investigation was undertaken to provide an assessment of both geoenvironmental and geotechnical ground conditions on the subject site with respect to any potential contamination in the underlying soils and / or groundwater.

Specifically, the report is intended to:

- a) Determine if there is a risk of the proposed end user being adversely impacted upon by potential contamination in shallow site soils that may be present on the site due to its known current, recent and historical use.
- b) Determine if there is a risk of groundwater and / or surface water being adversely impacted upon by potential contamination that may be present on the site due to its known current, recent and historical use.
- c) Determine if there is a risk to the end user from soil gases including methane, carbon dioxide, oxygen, and hydrogen sulphide.
- d) Determine shallow and deep ground conditions.

Phase 2 Ground Investigation Report

- e) Make recommendations for the design of foundations.
- f) Make recommendations for hardstanding design.
- g) Make recommendations for earthworks on Site.

2.0 Site Setting

2.1 Current Setting

The overall planning boundary comprises an area of 37.87 hectares (ha) which includes access roads, the planned Gills Bay substation site and additional areas for landscaping and drainage. Intrusive ground investigations, and the subject of this report, has been limited to a 10.93 ha area within which excavation and ground reforming works are required, i.e. the BESS and substation compounds (referred to herein as the Site).

The Site is currently situated on a vacant site, currently used for agricultural purposes and consisting of open fields. The Site peaks in the centre of the Site before dropping in altitude to the north and to the south.

The Site is centred on National Grid Reference (NGR) 329401, 971053. The Site location is presented in Figure 2.1 below.

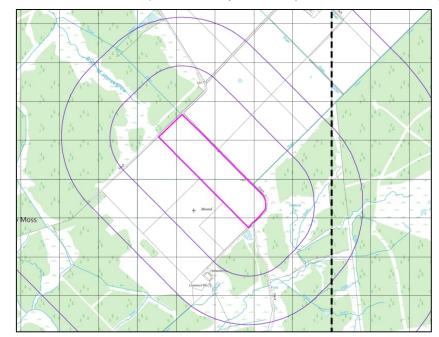


Figure 2.1: Site Location Plan (Site Boundary shown in pink and 250m buffer in purple)

2.2 Surrounding Land Use

The immediate surrounding land use to the development Site is highlighted in Table 2.1.

Table 2.1: Surrounding Area

	N	Woodland and agricultural fields
Surrounding	Е	Agricultural fields
Area	S	Agricultural fields
	W	Agricultural fields

2.3 Site History

With reference to the Curtins Phase 1 report, the earliest available mapping dating back to 1877 shows that the Site is a farmer's field with a sheepfold in the southwest of the Site. Between 1877 and 2023, minimal changes are shown on historical mapping of the Site with the exception of the sheepfold noted as a sheep dip in 1968. The sheep dip is no longer shown on the 2001 mapping. Beyond the Site boundary, the surrounding area is shown as farmland and woodland, with three quarries within 250m of the Site boundary shown on historical mapping from 1907. By 1968 the three quarries are no longer identified as "quarries" on historical mapping. Instead, the extents of excavation for the two quarries to the west are shown (approximately 60m and 75m to the west of the Site), and the southern quarry is shown as a pond.

2.4 Geology, Hydrogeology and Hydrology

With reference to the Phase 1 report, and the 1:50,000 BGS map (Wick – Sheet 116), the Site is underlain by superficial deposits identified as the Devensian Till and comprising Diamicton. The superficial deposits are in turn underlain by bedrock deposits from the Spittal Flagstone Formation comprising of siltstone, mudstone and sandstone.

Details on the hydrogeological classification of the Devensian Till are not given by SEPA mapping, although groundwater within the superficial deposits is likely to be limited due to the cohesive nature of the clay. The Spittal Flagstone Formation is characterised as a moderately productive aquifer, locally yielding small amounts of groundwater.

There are no recorded licensed surface water abstractions recorded within 1 km of the Site. A former well was noted on the 1906 map extract and was located adjacent to an existing property approximately 300 m southwest of the Site. No further information was available. There are no records of a discharge consent within 250 m of the Site.

The nearest surface water feature is the Burn of Horsegrow, located circa 100 m northwest of the Site.

2.5 Unexploded Ordnance (UXO) Risk Assessment

Risk mapping (Ref.7) for UXOs has placed the Site in a Low risk area. Low risk areas are those with a bombing density of up to 10 bombs per 1000 acres. These areas are considered to have a low UXO risk.

The Envirocheck Report historical mapping (Ref.1) does not indicate any ruins, or buildings that disappeared during WWII, on or surrounding the Site.

Based on the forgoing commentary, the likelihood of encountering UXO on Site as part of the ground investigation or development works is Low.

If unexploded ordnance is discovered, stop immediately, prevent access to the area, and inform the police. If the Site boundary or location changes, then the UXO risk should be reassessed.

3.0 Initial Conceptual Site Model

With reference to the Phase 1 report, the Initial Conceptual Site Model (CSM) provided within the Phase 1 report is included in **Table 3.1** below.

The CSM details the source-pathway-receptor linkages or potential contaminant linkages (PCL) that have been identified for the site. The GQRA details the associated level of risk relating to these potential contaminant linkages.

The CSM concerns risk to human health, water and environment. The CSM follows the framework outlined within CIRIA C552 which is summarised within **Appendix E**.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Qualitative Risk
Assessment

Generic

Quantitative Risk

Assessment

Detailed
Quantitative Risk
Assessment or;
Remedial Action

- Table 3.1 below represents the first stage in the land quality risk assessment process; the Qualitative Risk Assessment.
- In order for a development site to be deemed 'suitable for use' the level of risk needs to be brought down to acceptable levels, i.e., low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g., remedial action.
- In the absence of specific site data, a Generic Quantitative Risk Assessment is invariably recommended.

	Conceptual Site Model	Qualitative Risk Assessment				
Source	Pathway(s) Receptor(s)		Consequence	Likelihood of Occurrence	Risk Rating	Recommended Actions
	Direct contact, ingestion, inhalation (dust and vapours).	Site end-user	Medium Acute health risk	Low Due to the nature of the Site having undergone minimal development over time the presence of made ground is considered Low, however, there is potential for contaminants associated with the sheep dip.	Moderate/ Low	Generic Quantitative Risk Assessment recommended as part of the ground investigation to confirm risk assessment
Made Ground and contamination associated with the Sheep Dip. Fuel Spills from farming equipment during farming activities on the Site.	Vertical migration through the superficial deposits (soils) May occur due to physical processes including; capillary action and downwards into the natural deposits through infiltration, however, on site superficial deposits are likely cohesive in nature, as such are likely to reduce likelihood of vertical migration.	Water Environment (groundwater) Unclassified Aquifer. No potable abstraction points located within the vicinity of the site. The site is not within a source protection zone.	Mild Pollution of non-sensitive water resources	Low There is potential for the leaching of contamination form made ground arising from the site, however there is also a lack of potable abstractions within the area.	Low	No action required
	Horizontal migration over and through the superficial deposits (soils).	Water Environment (surface water) Burn of Horsegrow	Medium Pollution of sensitive water resources	Unlikely Unlikely considering the distance to the receptor.	Moderate/ Low	Generic Quantitative Risk Assessment recommended as part of the ground investigation to confirm risk assessment.
Production of ground generating gases from: • Made ground from infilled quarries to the south and west of the Site.	Vertical and horizontal migration through existing service corridors and the underlying superficial deposits.	Site end-user	Medium Human health risk	Likely With reference to BS8576:2013 (Ref.10), these sources are considered to have a moderate gassing potential.	Moderate	Ground Gas Monitoring Risk is considered Moderate due to proximity of western quarries, cohesive nature of on-site deposits and lack of infill of quarry adjacent to the Site. Ground Gas Monitoring should mitigate any residual risk to future Site users.

4.0 Fieldworks

4.1 General

The ground investigation was undertaken by Curtins between 20th and 1st March 2024. A summary of the scope and rationale for the intrusive works undertaken is summarised in Table 4.1 below.

The ground investigation was designed by Curtins in relation to the proposed development plans, findings of the Phase 1 and in general accordance with current UK guidance including LCRM (3), British Standard (BS) 10175 (4), BS5930:2020 (5) and Eurocode 7 (6).

Table 4.1: Phase 2 Ground Investigation Scope and Rationale

Exploratory Hole Type	Exploratory Hole Ref.	Exploratory Hole Depth (m bgl)	Rationale
7 No. Window Sample Boreholes	BH01 BH02 BH03 BH04 BH05 BH06 BH07	1.30 1.90 2.10 1.55 2.35 1.90 1.65	 To determine deeper ground conditions and potential deeper foundation design. To confirm geotechnical parameters. Collect soil and groundwater samples (if available) for geotechnical analysis. To determine groundwater depth/level.
28 No. Machine Excavated Trial Pits	TP01 TP02 TP03 TP04 TP05 TP06 TP07 TP08 TP09 TP10 TP11 TP12 TP14 TP15	1.20 0.65 1.30 1.20 1.80 1.20 1.40 1.80 1.80 0.90 1.60 1.10 1.05	 To mass characterise shallow ground conditions. Target potential areas of contamination and collect soil samples for chemical analysis. Obtain bulk geotechnical samples for earthworks laboratory testing.

Exploratory Hole Type	Exploratory Hole Ref.	Exploratory Hole Depth (m bgl)	Rationale
	TP16	1.05	
	TP17	1.60	
	TP18	1.30	
	TP19	1.20	
	TP20	1.60	
	TP21	1.50	
	TP22	1.60	
	TP23	1.30	
	TP24	0.80	
	TP25	1.30	
	TP26	1.70	
	TP27	1.10	
	TP28	1.70	
2 No. In Situ	SA01	1.10	
Soakaway Tests	SA02	1.20	 Perform infiltration tests for potential soakaway design.
2 No. In Situ	CBR1	1.14	
CBR Tests (Light Weight Deflectometer)	CBR2	0.67	 To establish CBR value of shallow soils and inform pavement design.
1 No. Hand Excavated Pit	HP01	0.70	 To retrieve samples in area associated with historical sheep dip Target a specific area associated with contamination

Curtins Exploratory Hole Location drawing (085449-CUR-00-XX-DR-GE-0002) records the locations of all exploratory hole locations a copy of which is contained within **Appendix A**.

4.2 Soil Logging and Sampling

Exploratory hole arisings were logged on site by a suitably qualified engineer in accordance with the requirements of BS5930:2015+A1:2020 (5). Copies of the exploratory hole logs are provided in **Appendix B**, with ground conditions presented in **Section 5.1**.

Representative soil samples were selected for laboratory chemical and geotechnical analysis, based on field observations and to provide a characterisation of the strata encountered. The samples were placed in laboratory provided containers and stored in cool boxes prior to being transported to the nominated laboratory under the laboratory's chain of custody documentation. The laboratory selected by Curtins for chemical analysis was DETS and geotechnical analysis was MATtest Ltd.

4.3 Monitoring Well Installations

Standpipes comprising 50 mm diameter plain and slotted pipework were installed within the 7 No. window sample boreholes to enable ground gas and groundwater monitoring.

A bentonite seal was placed above the screened section of the borehole to minimise potential for downward migration of contaminants and the creation of a preferential migratory pathway. A gravel aggregate surround was installed in the annulus between the sides of the borehole and the slotted sections of pipe.

The installed response zones are summarised in **Table 4.3** below.

Table 4.3: Monitoring Well Response Zones

Exploratory Hole Ref.	Response Zone(s) (m bgl)	Strata description
BH01	0.30 – 1.00	Brown and grey sandy gravelly CLAY
BH02	0.50 – 1.90	Dark brown sandy CLAY and FLAGSTONE
BH03	0.50 – 1.90	Brown and grey sandy CLAY and FLAGSTONE
BH04	0.30 – 1.20	Brown gravelly clayey SAND and brownish grey sandy gravelly CLAY
BH05	0.50 – 2.00	Brown and grey sandy gravelly CLAY and dark grey sandy gravelly CLAY
BH06	0.50 – 1.80	Grey gravelly CLAY and FLAGSTONE
BH07	0.50 – 1.60	Brown and grey sandy gravelly CLAY and dark grey sandy gravelly CLAY

4.4 Post Investigation Monitoring

An initial programme of three gas and groundwater monitoring visits were proposed in order to determine the underlying gas and groundwater regime for the Site. The three return monitoring visits have been undertaken between the 11th March and 10th April 2024, and are summarised in **Appendix D**.

5.0 In-Situ & Laboratory Testing

5.1 Environmental Chemical Testing

A programme of environmental chemistry testing was scheduled, with analytical suites developed reflecting the preliminary CSM in **Section 3.0** and observations made during the ground investigation.

Given limited potential sources of contamination were identified, sampling positions were generally located in a semitargeted array to give an adequate and representative coverage of the Site accounting for the historical site use and the immediate environmental setting, along with targeting areas of the Proposed Development.

5.1.1 Soil Analysis

Soil samples were taken from the Topsoil across the Site and tested for the suite listed in Table 5.1.

The nature and type of soil contamination potentially present on the Site was considered to include, amongst others; ash, petroleum hydrocarbons (e.g., fuel oils), heavy metals and asbestos the extent of which is captured by the broad environmental testing suite detailed in **Table 5.1**. Copies of the environmental chemistry testing certificates can be referred to in **Appendix C** of this report.

Table 5.1: Environmental Chemistry Analysis Suite: Soils

Analysis	Limit of Detection (LOD)
Asbestos Screen	N/A
рН	N/A
Organic Matter	0.1%
Arsenic	1 mg/kg
Boron (water soluble)	0.2 mg/kg
Cadmium	0.1 mg/kg
Chromium	0.15 mg/kg
Chromium VI	1 mg/kg
Copper	0.2 mg/kg
Lead	0.3 mg/kg
Mercury	0.05 mg/kg
Nickel	1 mg/kg
Selenium	0.5 mg/kg
Zinc	1 mg/kg
TPH (Aro/Ali C5-C35) inc BTEX	0.01 to 10 mg/kg
PAH (speciated)	<0.05 to <0.1 mg/kg
Phenols (total)	<0.1 mg/kg
Cyanide (total)	0.1 mg/kg
Sulphate (SO₄)	<1.25 mg/l

5.2 Geotechnical Testing

Soil samples taken during the ground investigation works were prepared in accordance with BS1377: Part 1:2016. The following geotechnical in-situ and laboratory testing has been undertaken as presented in **Table 5.2**. The results of the testing are discussed further in **Section 6.0** and presented in **Appendix C**.

Table 5.2: Geotechnical Testing Undertaken

Test Type	Quantity	Standard
	In-Situ	Testing
Standard Penetration Testing	12	BS5930:2015, Clause 41
In-Situ CBR	2	BS 1377:1990
	Laboratory Te	sting
Particle Size Distribution (wet sieve)	17	
Water Content	20	
Bulk Density	8	
Particle Density	9	BS 1377:2022
CBR	5	
Water Content/Dry Density Relationship	8	

6.0 Ground Conditions

6.1 Encountered Ground Conditions

The following section discusses the ground conditions determined from the ground investigation and laboratory testing described in **Section 5.1** with detailed information presented on the exploratory hole logs in **Appendix B**.

Where necessary, determination of characteristic parameters has been based on a cautious estimate of results derived from laboratory, published correlations and field tests and complemented with engineering judgement and consideration of the relevant limit state. The parameters are not considered to be absolute and should be referenced with the specific strata text in this section and reviewed when considering a specific area of the Site. The below figures should be referenced accordingly in relation to the field and laboratory testing results.

Table 6.1: Summary of Ground Conditions Encountered

Stratum	Depth to	top of strata	Thickr	ness (m)	General Description
	m BGL	m AOD	Min	Max	
Topsoil	GL	62.63 – 73.16	0.20	0.40	Dark brown organic slightly sandy CLAY. Frequent organic matter (peaty in places). Dark brown clayey sandy peaty TOPSOIL with frequent vegetation.
Devensian Till - Diamicton	0.2	62.33 – 72.91	0.30 (TP06)	1.80 (BH05)	Soft to stiff brown and grey mottled orange slightly silty slightly sandy slightly gravelly CLAY.
Spittal Flagstone Formation	0.70	61.03 – 72.06	0.05*	2.00*	Weak dark grey FLAGSTONE recovered as an angular to fine gravel.

Notes - *Total thickness not proven (Base of unit not encountered).

6.1.1 Topsoil

Ground levels within all exploratory hole locations across the Site comprised Topsoil material consisting of a dark brown organic slightly sandy CLAY, with frequent organic matter /vegetation (peaty in places). Topsoil thickness was variable from 0.20 m to 0.40 m. It should be noted that whilst the Topsoil is described as peaty in specific locations, the soil was not considered to be peat due to inorganic components (sand and clay) appearing more prevalently than organic content during the fieldwork.

6.1.2 Superficial – Glacial Till Deposits

Glacial Till deposits were encountered beneath Topsoil in all exploratory hole locations. The strata was typically encountered as a soft to stiff brown and grey mottled orange slightly silty slightly sandy slightly gravelly CLAY with high cobble content. Thickness was variable between 0.30 m and 1.80 m.

Classification Testing

13 No. particle size distribution tests (PSD) were undertaken on samples of Glacial Till. The results of these tests are presented in **Appendix D**. The results suggest a very clayey sand with granular content ranging between 50-64% and fines ranging between 37-57%.

Without Atterberg Limit Testing, the plasticity of the Glacial Till cannot be confirmed, and therefore for conservatism, and based on the descriptions provided in the field during logging, the Glacial Till has been assumed to be cohesive.

4 No. Standard penetration tests (SPTs) carried out from 1.2 m achieved full penetration which recorded an uncorrected 'N' value range of 11-45 with an average 'N' value of 18.

Unit Weight

A unit weight of 17 kN/m³ is recommended based on the guidance in BS8004:2015 (9) for a low to medium strength clay.

Earthworks Testing

The Specification for Highways Works (Volume 1, Series 600 Earthworks) classifies a material with >15% fines (<63µm) as a cohesive material and material with <15% fines as a granular material.

Based on proposed site levels, it is appropriate to consider the shallow soils to be excavated in areas of cut to classify as a Class 2 acceptable earthworks material.

13 No. Particle Size Distribution (PSD) tests were undertaken on samples submitted from the superficial Glacial Till. The results classify the samples as a Class 2 acceptable earthworks material subject to oversize material being removed.

8 No. dry density/moisture content relationship tests were undertaken on samples taken of the superficial Glacial Till.

Table 6.2 - Suitability for Reuse of Materials

Location Reference	Test Depth m bgl (Elevation m AOD)	Optimum Moisture Content (%)	Maximum Dry Density (Mg/m3)	As Received Moisture Content (%)	Wet/Dry of Optimum
TP02	0.60	15.5	1.79	16.7	Wet
TP04	1.00	13.9	1.85	15.8	Wet
TP09	0.60	21.0	1.62	22.3	Wet
TP12	0.60	11.4	1.85	18.2	Wet
TP14	0.60	13.4	1.81	17.5	Wet
TP19	0.60	13.0	1.82	22.8	Wet
TP27	1.00	12.2	1.86	17.3	Wet
BH04	1.00	11.5	1.84	17.7	Wet

Table 6.2 displays the results of the Maximum Dry Density/Optimum Moisture Content tests within the Cohesive Glacial Till. 8 No. out of 8 No. samples of the cohesive Glacial Till tested suggest that the moisture content is too high (wet of optimum moisture content) in order to achieve adequate compaction. Therefore a degree of drying out is likely to be required in order to compact the material sufficiently below structures or external areas. Excavating the soils during earthworks will naturally cause a degree of drying out; it is recommended that the stockpiled soils are retested to ascertain their moisture content prior to placement. If the moisture content is still too high, lime or a cement-based agent could be used to reduce the moisture content to acceptable levels subject to discussions with a suitable ground improvement expert / lime stabilisation company. Acceptable levels for compaction should be reported in a site-specific Earthworks Specification.

The maximum dry density ranged from 1.62 Mg/m³ to 1.86 Mg/m³ with an average maximum dry density of 1.80 Mg/m³.

6.1.3 Bedrock – Weathered Spittal Flagstone Formation

Weathered Bedrock of the Spittal Flagstone Formation was present beneath the Glacial Till in all locations to a maximum exploratory location depth of 2.35 m bgl (67.00m AOD), whereby SPT refusals were encountered due to the hardness of the bedrock. Bedrock was typically characterised as being weathered and comprising weak dark grey FLAGSTONE, recovered as a clayey angular fine to coarse gravel.

Phase 2 Ground Investigation Report

Classification Testing

3 No. particle size distribution tests were undertaken on samples of the Weathered Spittal Flagstone Formation. The results of these tests are presented in **Appendix D**. The results suggest a predominantly granular material (sand/gravel/cobbles) with an average fines content of 5%.

Seven SPTs were undertaken within the Weathered Spittal Flagstone Formation. Six of the SPTs reached refusal with uncorrected SPT 'N' values of 50. A single SPT undertaken in BH06 at 1.20 m bgl achieved full penetration with a recorded SPT 'N' value of 10 which is indicative of medium dense granular residual soil of the weathered bedrock.

Angle of Shearing Resistance can be estimated from SPT's using the guidance from Peck, Hanson and Thornburn (1974) (8). Based on an SPT of 50, this gives an Angle of Shearing Resistance of 41°.

A characteristic unit weight of 19 kN/m³ is recommended based on the guidance for a granular soil above the groundwater table.

6.2 Visual and Olfactory Indicators of Contamination

No visual or olfactory indicators of gross or mobile phase contamination were encountered within the Topsoil or underlying natural soils during the initial ground investigation.

6.3 Obstructions Encountered

No unexpected obstructions were encountered within any exploratory hole location throughout the duration of the ground investigations. All exploratory locations were terminated prior to target depth due to the presence of more competent bedrock.

The presence of further obstructions not identified by the ground investigations cannot be discounted.

6.4 Groundwater

12 No. groundwater strikes were encountered during the investigation, between 0.4 m and 1.8 m bgl (62.23 m and 67.58 m AOD respectively) across the Site. Due to the cohesive nature of the Glacial Till, and the granular Weathered Bedrock, these strikes are thought to be representative of 'perched groundwater' between superficial and bedrock strata.

The return monitoring visits did not record groundwater within the monitoring installations as shown in **Appendix D**.

6.5 Aggressive Ground Conditions

The classification of the site in terms of concrete in aggressive ground is based on the guidance provided in the Building Research Establishment (BRE) Special Digest 1 3rd Edition of 2017 (7). A summary of the results obtained during the ground investigation works are summarised in **Table 6.3a**.

Table 6.3a: Summary of pH and water soluble (2:1) sulphate testing

Stratum	Test Type	Range
Closial Till	рН	4.8 – 6.3
Glacial Till	Water Soluble Sulphate (mg/l)	10 - 38

A total of 6 No. samples underwent water soluble sulphate and pH testing. Using BRE Special Digest 1, the Aggressive Chemical Environmental for Concrete (ACEC) classification has been derived from sulphate and pH values for each stratum. These are highlighted in Table 6.3b.

 Table 6.3b: Aggressive Chemical Environment for Concrete (ACEC) Site Classification

Stratum	Design Sulphate Class	ACEC Class (1)
Diamicton, Till	DS-1	AC-1

⁽¹⁾ ACEC assessment was based on mobile groundwater condition in a greenfield scheme area.

7.0 Ground and Groundwater Contamination Risk Assessment

This section of the report includes the assessment of the potential solid contamination, liquid, and gas, identified on the subject site which may present a risk to the potential end users, associated utilities, and the wider environment.

In guidance published by the Environment Agency, the risk to human health or controlled waters is determined through an assessment of contaminant linkages between a source of contamination (within the ground or groundwater either on or off site) and a sensitive receptor such as end users of the site, building materials, edible plants grown in gardens or groundwater abstracted for drinking. This is termed a source-pathway-receptor relationship. The same model is applied to the assessment of risk arising from ground gases as detailed within BS8576:2013 (8).

These models have a common approach, which is one of a tiered assessment. At each stage of the assessment, further detail can be applied to the conceptual site model to provide a detailed interpretation on a site-by-site basis. As part of the planning process, this approach is adopted in order to establish either if the site is 'suitable for use' or whether additional work or else remedial work is required in order for the site to be deemed so.

The sub-sections hereafter therefore incorporate the first tier (Tier 1) of this approach otherwise referred to as the Generic Quantitative Risk Assessment (GQRA). The GQRA builds on the qualitative risk assessment presented in **Section 3.0**, in conjunction with observations made during the ground investigation and is based solely on the results of the chemical testing data obtained as part of Curtins Consulting's ground investigation.

The following sections present more detail on the risk assessment methodology rationale for the main receptors.

7.1 Human Health GQRA

Detailed guidance on human health risk assessment is available within several documents, published by both the Environment Agency and Defra. Guidance includes Contaminated Land Exposure Assessment (CLEA) v1.071 model Report SC050021/SR2: Human Health Toxicological Assessment of Contaminants in Soil and Report SC059921/SR3: Updated Technical Background to the CLEA Model (9).

A generic quantitative risk assessment (GQRA) has been carried out for the Potential Contaminant Linkages (PCLs) investigated by screening soil contamination data against relevant Generic Assessment Criteria (GAC) where available, including:

for screening out low risk areas of land contamination. SGVs give an indication of representative average concentrations of chemicals in soil, below which long-term health risks are likely to be minimal. SGVs have been published for several contaminants including arsenic, cadmium, mercury, nickel, selenium, BTEX, phenols and dioxins, furans and dioxin-like PCB substances for land uses including residential, allotments and commercial. The SGVs have been developed for a sandy loam soil with 2.5% soil organic matter (SOM) content;

Phase 2 Ground Investigation Report

ii) Supplementary Screening Values (SSVs): In addition to the SGVs developed by the EA, other third-party organisations have derived SSVs for a wider range of contaminants and land uses using the CLEA Model. Curtins have adopted these numbers where applicable, including those developed by Atkins AtriskSoil™, the LQM/CIEH Suitable for Use Levels (S4UL) and EIC/AGS/CL:AIRE published thresholds;

iii) Category 4 Screening Levels (C4SLs): In March 2014 Defra published C4SLs for arsenic, benzene, benzo(a)pyrene, cadmium, hexavalent chromium, and lead. These values were derived to support the revised Part 2A Statutory Guidance issued in 2012 in which four categories of contaminated land are included, ranging from Category 1 (significant/high risk) to Category 4 (low risk). C4SLs are not representative of significant possibility of significant harm (SPoSH) and are low risk levels which, and therefore where the C4SLs are not exceeded, land can be demonstrated to be in Category 4 and cannot be determined as contaminated land.

The Proposed Development comprises the construction of a BESS, with associated access and drainage infrastructure.

This GQRA initially considers the following land use scenario for the development as part of a robust conservative assessment:

Commercial

Details of the GACs adopted for the GQRA are provided in Appendix D.

7.1.1 Soils

As part of the investigation, a total of fourteen environmental samples from Topsoil were submitted for environmental testing based on a suite presented in Table 5.1.1. The distribution of samples and quantity of sampling is considered sufficient for the development site.

As discussed within the previous section, comparison of the soil analysis results has been undertaken against conservative Generic Assessment Criteria (GAC) based on a "commercial" end use.

Soil organic matter (SOM) has a strong bearing on the availability of potential contaminants and therefore influences the Tier 1 thresholds. The SOM typically ranged from 0.2% to 8.7%, with an average of 2.18%. As such, as part of a conservative assessment, the comparison has been made against GACs developed for a clayey soil with a SOM of 2.5%. The results of the environmental testing are appended in Appendix C. Copies of the adopted Tier 1 thresholds are contained within Appendix D.

With respect to the adopted conservative screening criteria for *commercial* end usage, the results of the screening did not identify any exceedances within samples submitted for chemical analysis. Consequently, on-site shallow soils are unlikely to present a risk to future site users.

Phase 2 Ground Investigation Report

7.1.2 Asbestos

A total of sixteen samples (Topsoil) were submitted to the laboratory for an asbestos presence screen. The testing concluded that asbestos containing materials were not positively identified in any of the samples submitted for laboratory testing.

7.1.3 Organochlorides

A total of two samples (topsoil and superficial deposits) were taken from a shallow hand pit undertaken in the vicinity of the area associated with the historical sheep dip. The samples were screened for organochlorides (typical contaminants associated with sheep dips). The testing concluded that no organochlorides were detected in any of the samples submitted for laboratory testing.

7.1.4 Groundwater Derived Vapours

Twelve shallow groundwater seepages were recorded on-site as part of the ground investigation. However, as previously discussed, no gross or mobile phase contamination was encountered within the natural soils during the ground investigation based on visual and olfactory observations. With this borne in mind, groundwater-derived vapours are unlikely to present a risk to future site users.

7.2 Water Environment – GQRA

Groundwater monitoring identified water to be present within the installations monitored as part of this ground investigation. Water levels were considered to be associated with perched water between the overlying superficial deposits and the underlying bedrock deposits, and this was not considered to be groundwater. In the absence of any groundwater recorded within the monitoring visits and the absence of groundwater abstraction for potable use within the influencing distance of the site, the risk to the groundwater environment is deemed to be Low owing to; the absence of potential sources of contamination and the overall limited nature of contamination to mobilise at Site based on the geological setting.

There are no surface water features within the Site boundary. It should also be noted that the off-Site surface water features (drainage burns to the north connected to the Burn of Horsegrow) also have the potential to be impacted by any surface water runoff from the Site. However, considering the absence of potential sources of contamination and the overall limited nature of contamination mobility revealed on Site from the geological setting, the risk to the surface water environment is deemed Low.

With reference to the above commentary, the risk to the controlled waters environment is assessed as Low and therefore there is no requirement for further action to assess the potential risk to the controlled waters environment.

7.3 Ground Gas – GQRA

The assessment of risk presented by ground gases is assessed with reference to guidance published by CIRIA Assessing Risks Posed by Hazardous Ground Gases to Buildings, C665, (10) BSI Publication code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings BS8485:2015+A1:2019 (11) and BS8576 (8)

The gas risk assessment adopts a tiered approach. In the first instance this involves a re-evaluation of the Conceptual Site Model described within the Phase 1 Preliminary Risk Assessment (desk study) and thereafter validating this conceptual model with the ground gas data, the semi-quantitative risk assessment.

7.3.1 Asphyxiant, Noxious and Explosive Gases

The Preliminary Conceptual Site Model (PCSM) presented within Section 3.0 noted the potential for gases to arise from uncontrolled deposition of Made Ground off-site. The ground investigation did not encounter any Made Ground across the site. The remainder of the site comprised Topsoil over natural soils with no organic or putrescible material. With reference to BS8576, Figure 6; the development site would be considered to have a 'very low' gassing potential.

Consequently, ground gas monitoring would not necessarily be required to further determine risk. However, to establish a baseline gas regime and validate the qualitative assessment of ground gas risk, seven dual-purpose gas and groundwater monitoring installations were constructed within boreholes as detailed in Table 4.3 within Section 4.3.

A programme of three gas and groundwater monitoring visits was proposed with visits undertaken on 12th March, 25th March and the 9th April 2024. Gas monitoring to date has been undertaken during steady and rising atmospheric pressures with barometric pressure ranging from 988 mb to 1010 mb. A summary of the soil gas monitoring results is presented in **Table 7.1** below, with the monitoring results presented in **Appendix D**.

Table 7.1: Summary of Soil Gas Monitoring Results

Location	CO₂ Range (% ^{vol} / _{vol})	CH ₄ Range (% ^{vol} / _{vol})	O ₂ (% ^{vol} / _{vol})	Max Flow Rate (I/hr)	Steady State Flow Rate (I/hr)
BH01	0.1	<0.1	20.3 – 20.8	<0.1	<0.1
BH02	0.1	<0.1	20.2 – 20.9	<0.1	<0.1
BH03	0.1	<0.1	20.2 – 20.5	<0.1	<0.1
BH04	0.1	<0.1	20.4 – 20.8	<0.1	<0.1
BH05	0.1	<0.1	20.8 – 21.0	<0.1	<0.1
BH06	0.1	<0.1	21.1	<0.1	<0.1
BH07	0.1	<0.1	20.4 – 20.6	<0.1	<0.1

Hydrogen sulphide and carbon monoxide were not detected during any of the ground gas monitoring visits.

Phase 2 Ground Investigation Report

Maximum concentrations of carbon dioxide and methane were recorded at 0.1% ^{vol}/_{vol} and <0.1% ^{vol}/_{vol} respectively. The ground gas concentrations are consistent with natural soils with no organic/putrescible material recorded. As previously detailed, the above is considered to comprise 'very low' gassing potential in accordance with BS8576 Figure 6.

Considering both a 'worst credible scenario' (maximum 'absolute' flow rate, maximum gas concentration within a single borehole location) and 'worst possible scenario' (maximum 'absolute' flow rate, maximum gas concentration across all borehole locations) the Hazardous Gas Flow Rates (Qhg) for the site are evaluated as 0.0001 (carbon dioxide) and <0.0001 (methane).

In this site situation, the calculated Hazardous Gas Flow Rates (Q_{hg}) are considered to be reflective of a conservative assessment of Gas Screening Values (GSV) with generally negligible flow rates and non-detectable concentrations of methane recorded.

With reference to CIRIA C665 (10), the above calculated GSV, indicate a Characteristic Situation (CS) 1 in regard to ground risk. Ground gas is not considered to be a potential risk at the development site.

7.4 Radon Gas

The BGS Radon Mapping (Ref.5) confirms the site is situated in radon area where >5-10% of homes are at or above the radon action level. On this basis basic radon protection measures are considered likely in the construction of any enclosed spaces.

8.0 Revised Conceptual Site Model

The preliminary conceptual site model (PCSM) presented and discussed in **Section 3.0** of this report has been revised following the GQRA in **Section 7.0** above and this revised Conceptual Site Model (CSM) is presented in the table overleaf.

The CSM details the source-pathway-receptor linkages or potential contaminant linkages (PCL) that have been identified for the site. The GQRA details the associated level of risk relating to these potential contaminant linkages.

The CSM concerns risk to human health, Water and Environment and follows the framework outlined within CIRIA C552 which is summarised within **Appendix E**.

The 'risk rating' within the CSM refers to the risk that the source, pathway, receptor linkage or PCL is complete. Unless specifically stated it does not necessarily refer to an immediate risk and is intended to be used as a tool to assess the necessity for further assessment/investigation.

Under current health and safety legislation, employers are required to carry out their own appropriate risk assessments and mitigation to protect themselves and their employees, other human receptors and the environment from potential contamination. Such risks must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015 which require that potential risks to human health and the environment from construction activities are appropriately identified and all necessary steps taken to eliminate/manage that risk. It has been assumed that any future construction works on site will be undertaken in compliance with these requirements and therefore construction workers involved in the building works at the site have been discounted as a human receptor in the conceptual site model.

Qualitative Risk Assessment Generic Quantitative Risk Assessment Detailed Quantitative Risk Assessment or; Remedial Action

- **Table 8.1** below represents the second stage in the land quality risk assessment process: The Quantitative Risk Assessment.
- In order for a development site to be deemed 'suitable for use', the level of risk needs to be brought down to acceptable levels, i.e., low to negligible risk. The purpose of each stage of risk assessment is ultimately to establish, if there is a requirement for additional levels of assessment to be made in order to have sufficient confidence to support a risk characterisation or management decision, e.g. remedial action.

	Conceptual Site Model		Qualitative Risk Assessment						
Source	Pathway(s)	Receptor(s)	Consequence	Likelihood of Occurrence	Risk Rating	Recommended Actions			
Made Ground and contamination associated with the	Direct contact, ingestion, inhalation (dust and vapours).	Site end-user	Medium Acute health risk	Low Made Ground was not encountered onsite. Samples of onsite shallow natural soils sent for chemical testing did not identify any chemical exceedances against commercial GACs. The areas of the historical sheep dip area was investigated via a shallow hand pit. Samples were retrieved and sent for chemical testing of organochlorides and did not identify any chemical exceedances against commercial GACs.	Low				
Sheep Dip. Fuel Spills from farming equipment during farming activities on the Site.	Vertical migration through the superficial deposits (soils) May occur due physical processes including; capillary action and downwards into the natural deposits through infiltration, however, on Site deposits are likely to be cohesive in nature, reducing the potential for vertical migration.	Water Environment (groundwater) Unclassified Aquifer. No active/in use potable abstraction points located within the vicinity of the site.	Mild Pollution of sensitive water resources	Low Made Ground was not encountered onsite. Twelve groundwater strikes were recorded during the investigation; these were characterised as perched water and not representative of a sensitive resource. Samples of onsite shallow natural soils sent for chemical testing did not identify any chemical exceedances against commercial GACs, in addition no visual or olfactory contamination was encountered onsite. Consequently, the risk to controlled waters is deemed as low.	Low	No further action required			
	Horizontal migration over and through the superficial deposits (soils).	Water Environment (surface water) Burn of Horsegrow	Medium Pollution of sensitive water resources		Low				
Production of ground generating gases from: Made ground from infilled quarries to the south and west of the Site.	Vertical and horizontal migration through existing service corridors and the underlying superficial deposits.	Site end-user	Medium Human health risk	Low As previously discussed, the main sources of ground gas generation were located off-site (former quarries). Monitoring wells were installed across the Site and close to the west and south boundaries of the Site in order to encapsulate any migrating ground gases. With reference to BS8576, Figure 6 such material would have 'very low' gassing potential and unlikely to contribute a site-wide ground gas risk. Subsequent monitoring data did not identify significant levels of ground gas. Consequently, ground gas protection measures are not required on-site.	Low	No further action required			

In conclusion, the previous Revised Risk Assessment indicates a **Low** risk to human health, controlled waters, and ground gas from on and off-site.

9.0 Preliminary Geotechnical Assessment

The recommendations provided within this section are based on a review of the recent records of ground conditions encountered across the site, along with the proposed development. This section will assess the relevant geotechnical issues for the proposed development. The proposed development plan is contained within **Appendix A**. The engineering assessment considers:foundation design, bearing capacity, settlement, excavations, earthworks, and pavement design for the site. It should be noted that details may change in the development of designs beyond the issue of this Phase 2 GI Report and the construction-stage designer should satisfy themselves regarding the adequacy of their design and proposed approach to construction by reference to the ongoing project design proposals, the ground investigation information, and their own examination of the site.

9.1 Geotechnical Considerations

9.1.1 Topography

Across the proposed Battery Compound, over a distance of 264 m, there is currently a difference in elevation of 11.5 m from 62 m AOD in the north-west and 73.5 m in the south-east, which gives a slope angle of approximately 2.5°.

9.1.2 Compressible and Variable Thickness Superficial Deposits

The Glacial Till was encountered as soft to stiff brown and grey mottled orange slightly silty slightly sandy slightly gravelly CLAY between 0.30 m and 1.80 m thick. 2 No. SPTs were carried out in the Glacial Till, giving N-values of 11 and 45 at elevations of 68.16 m and 61.43 m AOD, respectively.

Under shallow foundation loading, cohesive soils are likely to undergo settlement. Over the design life of the buildings, this loading can lead to excess pore water pressure dissipation leading to consolidation settlement. In order to determine suitability for shallow raft foundations, further in situ testing and Atterberg Limit testing need to be carried out to confirm the strength and consolidation parameters. Further to this a settlement assessment would be required.

9.1.3 Shrinkable Soils

As per the NHBC Chapter 4.2 (2024), "Shrinkable soils, often change volume as moisture content fluctuates seasonally and as a result of factors, including the action of tree roots. The resulting shrinkage or swelling can cause subsidence or heave damage to foundations, the structures they support and services". Given the cohesive nature of the Glacial Till, there is a potential of volume change potential that may affect the proposed foundations and floor slab.

The PSD results for the Glacial Till indicate a very clayey sand, where shrink/swell would not be an issue and there are currently no Atterberg Limit tests available to confirm whether the soils are cohesive. It is recommended that further trial pitting is carried out in order to carry out Atterberg Limit tests to confirm this.

9.2 Earthworks

For the proposed earthworks, cut and fill will be required to achieve formation level due to the sloping nature of the Site and presence of shallow bedrock.

9.2.1 Reuse of Site Won Materials

Earthworks should be undertaken in accordance with Series 600 of the Specification for Highways Works (SHW). Cut materials will comprise the Glacial Till and/or weathered bedrock (Spittal Flagstone Formation – Flagstone).

It is considered that the excavated material could be classified as a Class 1 or Class 2 Acceptable Earthworks Fill (in accordance with Table 6/2 SHW Series 600) subject to the receipt of further testing undertaken in accordance with a site specific earthworks specification. A summary of the grading results is provided in **Table 9.1** together with the determined material classification (assuming oversize material removed).

Table 9.1: Summary of PSD test results and appropriate material classification

Sample	Depth	500	300	125	90	75	37.5	28	20	14	10	6.3	5	3.35	2	1.18	600	300	150	63	Class
TP01	0.6	100	100	100	100	100	98	98	97	96	95	95	94	93	92	90	88	84	69	44	2C
TP03	1.25	100	100	100	68	45	9	7	6	6	6	6	5	5	5	5	5	5	4	3	1A
TP05	1.5	100	100	100	100	100	100	98	98	94	93	91	90	88	86	84	81	76	59	37	2C
TP07	1	100	100	100	100	100	100	99	99	96	95	92	91	90	89	87	84	80	66	47	2C
TP10	0.6	100	100	100	100	100	100	98	95	93	91	88	87	85	83	81	78	78	70	50	2C
TP11	0.6	100	100	100	88	82	73	39	30	24	20	16	15	14	12	11	11	10	8	7	1A
TP15	0.6	100	100	100	100	100	100	100	99	98	97	95	95	94	93	92	90	85	66	38	2C
TP17	0.25	100	100	100	100	100	100	100	98	98	97	97	96	96	95	93	84	69	55	20	2C
TP18	1	100	100	100	100	100	99	97	96	95	94	92	91	90	88	86	83	80	61	40	2C
TP21	0.3	100	100	100	100	100	100	94	94	90	88	86	85	84	82	77	66	54	33	15	1A&1B
TP23	1.2	100	100	100	100	100	93	83	66	56	49	44	41	39	36	33	30	27	24	20	2C
TP25	0.9	100	100	100	100	100	100	100	100	99	98	97	96	96	95	93	90	82	65	43	1A&1B
TP27	1	100	100	100	100	100	83	74	59	52	47	42	40	38	37	35	33	31	25	16	2C
BH01	0.8	100	100	100	100	100	100	100	100	100	99	98	97	96	95	94	90	83	65	39	2C
BH05	1.8	100	100	100	100	100	90	89	88	86	85	83	83	82	81	78	70	63	49	32	2C
BH06	1.8	100	100	100	100	100	95	78	62	54	44	36	34	27	27	25	23	21	19	17	2C
BH07	1.2	100	100	100	100	100	100	100	97	96	93	87	85	82	77	75	73	71	63	57	2C
AVERAGE		100	100	100	97	96	91	86	81	78	76	73	72	71	69	67	63	59	47	31	2C

Phase 2 Ground Investigation Report

Subject to the removal of oversize material (>125 mm), the results suggest that the excavated Glacial Till is likely to classify as a Class 2 Acceptable Earthworks Material in accordance with the SHW Series 600, Table 6/2. Based on the PSD test results, the weathered bedrock (Spittal Flagstone Formation) could be classified as a Class 1 Acceptable Earthworks Material although, as with the Glacial Till, this is to be confirmed by the appropriate geotechnical testing carried out in accordance with a detailed earthworks specification written in accordance with SHW Series 600.

Testing of Glacial Till suggests that the moisture content is too high (wet of optimum moisture content) in order to achieve adequate compaction. Therefore, a degree of drying out is likely to be required in order to compact the material sufficiently below structures or external areas. Excavating the soils during earthworks will naturally cause a degree of drying out, it is recommended that the stockpiled soils are retested to ascertain their moisture content prior to placement. If the moisture content is still too high, lime or a cement-based agent could be used to reduce the moisture content to acceptable levels subject to discussions with a suitable ground improvement expert / lime stabilisation company. Acceptable levels for compaction should be reported in a site-specific Earthworks Specification.

9.3 Foundation Design

9.3.1 Shallow Foundations

The proposed development comprises a battery storage facility with a maximum expected loading of 50 kN/m² and a transformer with a maximum loading of 120 kN/m².

Shallow foundations are considered to be feasible for this site, pending confirmation of structural loadings and layouts. It is recommended that foundations are extended through any cohesive superficial deposits into the Granular weathered Flagstone soils encountered at depths ranging between 61.03 m AOD and 72.06 m AOD.

A conservative bearing capacity check has therefore been for the Weathered Flagstone using guidance from Tomlinson (2001), Hansen (1968), Bowles (1988) and Eurocode 7: Geotechnical Design to confirm feasibility. Based on an angle of Shearing Resistance of 41°, for a 1.5m x 1.5 m pad foundation, at a minimum of 1.1 m bgl, a bearing capacity of approximately 150 kPa is estimated within the Weathered Bedrock.

In areas where thicker cohesive strata are anticipated (due to the sloping nature of the site) over-excavation and replacement with competent granular fill material will be required in order to achieve adequate bearing capacities and limit differential settlements. Foundations should not be formed or spread across mixed cohesive and granular soils.

Phase 2 Ground Investigation Report

9.3.2 Raft Foundations

For a proposed raft foundation, a minimum 750 mm of Class 6F2/6F5 granular fill would need to be placed beneath the slab (assuming a low volume change potential within the Cohesive Glacial Till) with Class 2 general fill placed down to the weathered bedrock of the Spittal Flagstone Formation. All fill materials should be placed and compacted to an earthworks specification. N.B. the low volume change potential described above is based on engineering judgement in this area of Scotland including investigations in similar over consolidated glacial till soils and descriptions of the soil but is subject to receipt of further testing.

A detailed settlement assessment should also be undertaken to confirm the material parameters required for the fill, to detail the compaction requirements, determine the appropriate thickness of Class 6F2/6F5 granular fill beneath the raft and to ensure settlements are not excessive.

9.3.3 Ground Floor Slab

Assuming excavation and replacement of the softer and cohesive soils will be undertaken and all structural fill will be tested and placed strictly in accordance with an appropriate earthworks specification, then ground bearing floor slabs founding in the Granular bedrock deposits or Granular Engineered Fill are considered to be feasible. Consideration would need to be given to potential total and differential settlements.

Prior to the placement of the founding materials and the construction of the ground bearing floor slab, the formation will need to be inspected and checked by a suitably qualified engineer to ensure the ground conditions are as expected.

9.4 Groundwater and Excavations

It is anticipated that earthworks will be required during the enabling works and shallow excavations during the construction phase. During the Site investigation it was noted that rock was relatively easily excavated by the tracked excavator in the upper 100 mm but proved more resilient with depth. Coring of the bedrock was out of the scope of this investigation. Further ground investigation would be required in order to confirm the strength of the bedrock with depth through logging and the appropriate testing.

Seepages within the superficial Glacial Till cannot be discounted and may be present in shallow excavations.

The trial pits carried out on site appeared to be stable during excavations. However, this may be different during the construction phase due to unknown variables such as heavy rain and higher groundwater. In accordance with Health and Safety Regulations, side support for safety purposes should be provided to all excavations which appear unstable and those more than 1.2 m deep. Excavations are likely to be stable at suitable batters.

Noticeable amounts of standing water encountered within the excavations could result in weakening of the founding soils. As such, where encountered, the water should be removed facilitating suitable methods such as sump pumping.

Phase 2 Ground Investigation Report

General advice on de-watering in accordance with CIRIA Report C750: Groundwater Control (12) should be taken into consideration. The chosen contractor should provide details on how they intend to ensure the safety and stability of proposed excavations.

9.5 Hardstanding Design

CBR values are used to determine road pavement construction thicknesses with the following results:

- 2 No. in-situ Lightweight Deflectometer (LWD) tests were carried out to depth of between 0.67m bgl (71.51m AOD) and 1.14m bgl (58.64m AOD). 19 No. CBR results were provided across the depth range in these depths ranging from 1.4% to >20%.
- Laboratory CBR testing was undertaken on 5 No. soil samples retrieved from depths of 0.50m to 1.00m bgl, with results ranging from 0.1% to 1.0% with an average CBR of 0.68%.

As the final location, layout and engineering level of proposed structure maybe subject to change and given the tests were affected by cobbles within the Glacial Till and high moisture contents in the laboratory (which would be controlled in earthworks) it will be necessary for further, updated CBR tests to be undertaken at detailed design and on prepared sub-formation prior to the construction of any road pavement areas.

At this stage and based on the CBR results carried out and where near surface natural soils are encountered at road pavement formation levels, a California Bearing Ratio of <2.5% can be assumed and full road capping should be allowed for to mitigate total and differential settlements. This could be varied where natural deposits are encountered during construction. Atterberg Limit testing of the Glacial Till should also be carried out to make a full assessment.

The above is subject to in situ testing during construction. Any soft or loose layers encountered in otherwise competent formations should be removed and replaced with well compacted imported granular fill.

The engineering characteristics of any clayey and silty soils at shallow depth are particularly sensitive to changes in soil moisture content and will soften considerably when exposed to free water. It would therefore be prudent to program pavement construction for the dry summer months where possible. Where this is not possible, steps should be taken to protect construction activities in adverse weather, for example not placing any fill until compaction plant is on site to work it and excavating grips or temporary drainage ditches to collect run off and/ or groundwater during periods of particularly heavy rain.

Phase 2 Ground Investigation Report

9.6 Drainage

The preliminary in-situ soakaway tests carried out as part of the site investigation works indicated poor infiltration characteristics of the underlying glacial deposits being unsuitable for soakaway infiltration. It should be noted that these tests were carried out for the purposes of early feasibility assessments only and were not fully compliant with BRE 365 as the 75% and 25% drop in water levels were not achieved.

It is recommended that if soakaway infiltration is proposed as part of the development (for example within the bedrock soils), confirmatory soakage testing is undertaken at proposed the specific intended soakaway locations and mimicking the proposed volumes/depths, once the drainage design is finalised.

10.0 Conclusions

10.1 Conclusions

A revised tabulated Conceptual Site Model has been derived following the findings of the Generic Quantitative Risk Assessment and is presented in Section 8.0.

The environmental chemistry soil results have been compared with the Generic Assessment Criteria (GAC) for soils with respect to human health against "commercial" land use thresholds. The results of environmental testing did not record any exceedances of contaminants above the adopted GACs nor the presence of asbestos and elevated concentrations of organochlorides.

The contamination risk to controlled waters, both groundwater and surface water, is considered to be Low.

The risk to end users from ground gases was considered to be Low. A review of the ground gas risk highlights no ground gas protection measures are required for the Site, however. the BGS Radon Mapping confirms that the site in a moderate probability radon area where less than 5-10% of homes are estimated to be at or above the action level. Therefore basic radon protective measures are necessary in the construction of any enclosed spaces.

If the new development incorporates a basement the advice of a specialist Radon assessor must be obtained.

Specific trial digs encountered Topsoil described as peaty but not considered Peat due to visual identification of higher inorganic components (sand and clay). As such, a peat management plan is not required for the Site.

The bedrock underlying the Site is considered a suitable founding stratum due to the shallow depth beneath existing ground level and an estimated allowable bearing capacity of 150 kPa for a 1.5 m x 1.5m pad foundation at a minimum depth of 1.1m bgl.

For a proposed raft foundation, a minimum 750 mm of Class 6F2/6F5 granular fill would need to be placed beneath the slab (assuming a low volume change potential within the Cohesive Glacial Till) with Class 2 general fill placed down to the weathered bedrock of the Spittal Flagstone Formation. All fill materials should be placed and compacted to an earthworks specification. N.B. the low volume change potential described above is based on engineering judgement in this area of Scotland including investigations in similar over consolidated glacial till soils and descriptions of the soil but is subject to receipt of further testing. A detailed settlement assessment should also be undertaken to confirm the material parameters required for the fill, to detail the compaction requirements, determine the appropriate thickness of Class 6F2/6F5 granular fill beneath the raft and to ensure settlements are not excessive

The preliminary in-situ soakaway tests carried out as part of the site investigation works indicated poor infiltration characteristics of the underlying glacial deposits being unsuitable for soakaway infiltration. It is recommended that if soakaway infiltration is proposed as part of the redevelopment (for example within the bedrock soils),

Phase 2 Ground Investigation Report

confirmatory soakage testing is undertaken at proposed the specific intended soakaway locations and mimicking the proposed volumes/depths, once the drainage design is finalised

At this stage and based on the CBR results carried out and where near surface natural soils are encountered at road pavement formation levels, a California Bearing Ratio of <2.5% can be assumed and full road capping should be allowed for to mitigate total and differential settlements. Further in-situ CBR testing should be undertaken at formation level where hardstanding is proposed to confirm the CBR value used in preliminary design

10.2 Recommendations

In light of the ground investigation undertaken to date across the development site, the following recommendations are made:

- Further trial pitting should be carried out in order to obtain samples within the Glacial Till for Atterberg Limit testing. Once complete, this report should be revisited and the proposed foundation build ups updated accordingly.
- Earthworks should be undertaken in accordance with an Earthworks Specification and a detailed settlement assessment is likely to be required for a raft foundation on Engineered Fill:
- Additional CBR tests on the subgrade are recommended post cut/fill to determine if ground improvement is required (if CBR is <2.5%);
- It is recommended that no further environmental works are considered necessary and based on this information a remediation strategy is not considered necessary.

11.0 References

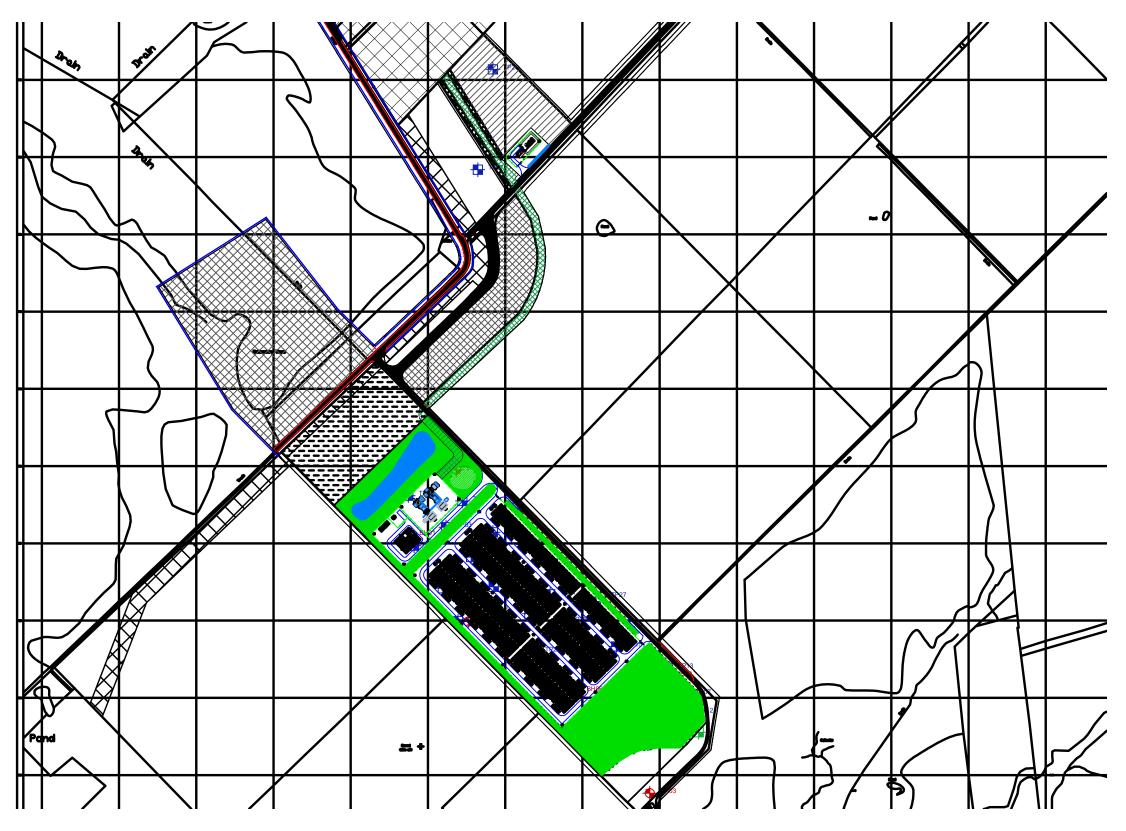
- 1. **Curtins.** *Rigifa, Phase 1 Preliminary Risk Assessment (ref. 085499-CUR-00-XX-RP-GE-00001).* July 2024 (P04 September 2024).
- 3. Environment Agency (EA). Land Contamination Risk Management. April 2021.
- 4. **British Standard Institution (BSI).** *Investigation of Potentially Contaminated Sites (report no. BS10175)*. 2011.
- 5. British Standards (BS). BS 5930, Code of practice for site investigations. 2020.
- 6. British Standards Institution. Eurocode 7: Geotechnical Design (report no. BS EN 1997. 2006.
- 7. BRE. BRE Special Digest 1 (SD1:2005), Concrete in aggresive ground, 3rd Edition. 2017.
- 8. BS8576 Guidance on investigations for ground gas Permanent gases and Volatile Organic Compounds (VOCs). **British Standards.** 2013.
- 9. Environment Agency. Updated Technical Background to the CLEA Model (SR3). January 2009.
- 10. CIRIA. Assessing Risks Posed by Hazardous Ground Gases to Buildings (report no. C665). 2007.
- 11. **British Standards.** British Standard 8485:2015+A1:2019 Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings . 2015.
- 12. CIRIA. C750 Groundwater control design and practice. 2016.1
- 13. Assessing risks posed by hazardous ground gases to buildings (C665). Construction Industry Research and Information Association (CIRIA). 2007.
- 14. Tomlinson Foundtion Design and Construction (7th Edition). 2001

Phase 2 Ground Investigation Report

12.0 Appendices

Appendix A – Drawings

Appendix B – Borehole Logs


Appendix C – Laboratory Testing Results

Appendix D – Qualitative Risk Assessment Rationale

Phase 2 Ground Investigation Report

Appendix A - Drawings

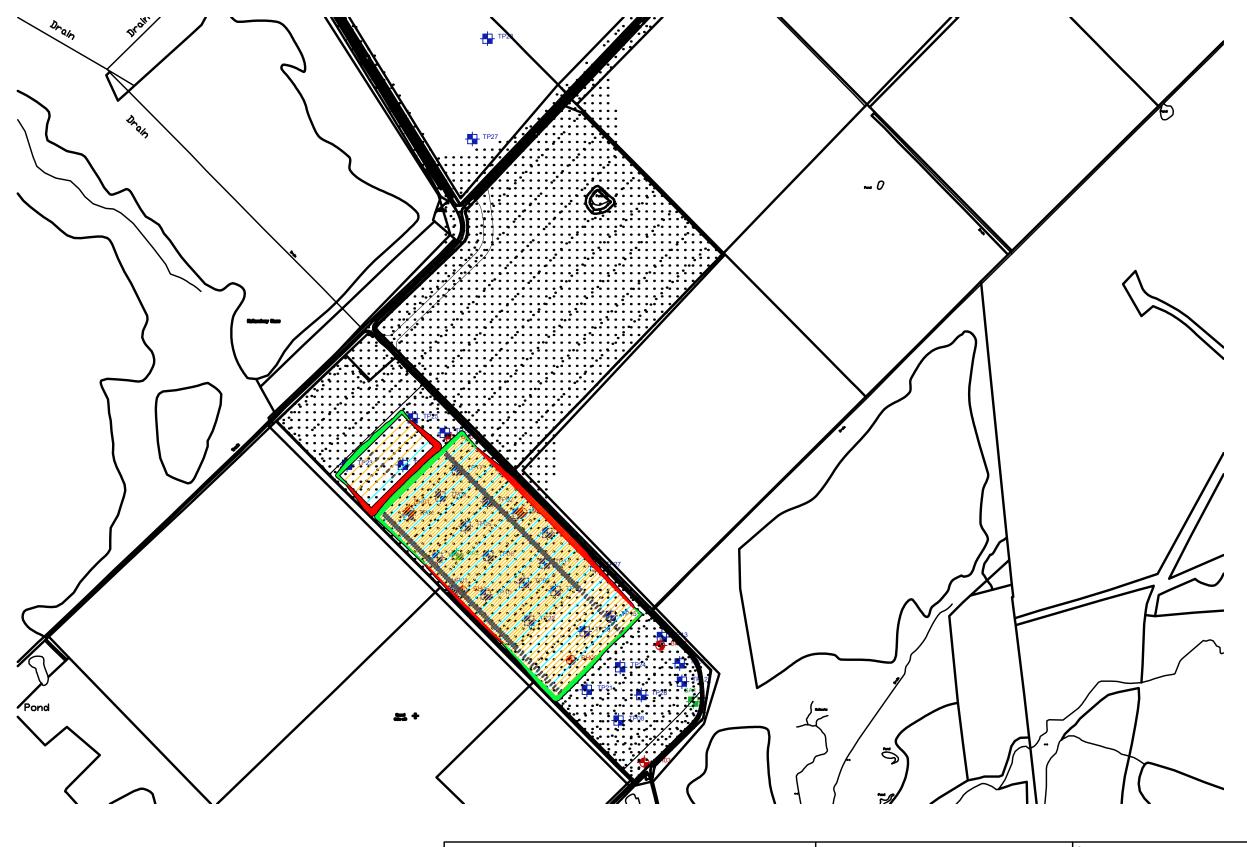
Key

Cable Percussive Boreholes

Machine Excavated Trial Pits

Soakaway Tests

REV	ISSUED	00/00/00	XXX	XXX
Rev:	Description:	Date:	Ву:	Chkd:


Curtins

Office Telephone Email

Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

Project: RIGIFA	Status: FINAL						
Drg Title:							
FINAL GROUND	Drawn By MTL Chec	cked By CD					
INVESTIGATION LOCATIONS	Designed By MTL Date						
	Scales @ A3 NTS	Revision					
Project No - Originator - Function - Spatial - Form - Discipline - Number							

085449 - CUR - XX - RG - D -GE- 00002

Key

Cable Percussive Boreholes

CP

Machine Excavated Trial Pits

TF

Soakaway Tests

REV	ISSUED	00/00/00	XXX	XXX
Rev:	Description:	Date:	By:	Chkd:

Curtins Proj

Office Telephone Email Web

Civils & Structures • Transport Planning • Environmental • Infrastructure • Geotechnical • Conservation & Heritage • Principal Designer
Birmingham • Bristol • Cambridge • Cardiff • Douglas • Dublin • Edinburgh • Glasgow • Kendal • Leeds • Liverpool • London • Manchester • Nottingham

			₽igif			
Project: RIGIFA	Status: FIN	NAL .	Numbers\085449 - F			
org Title:) Sers			
	Drawn By MTL	Checked By CD	Num			
CUT & FILL SITE LAYOUT	Designed By MTL	Date 09/07/24	ge (
	Scales @ A3 NTS					
Project No - Originator - Function - Spatial - Form - Discipline - Number Revision						
			ojects\Vision			

085449 - CUR - XX - RG - D -GE- 00003

Appendix B – Borehole Logs

Borehole No. Borehole Log **BH01** Sheet 1 of 1 Project No. **Hole Type** Co-ords: E: 329283.3 N: 971101.7 Project Name: Rigifa GD 0726 WS Scale Location: Thurso Level: 64.24 1:25 Rig Type Dates: Client: 20/02/2024 Curtins Competitor Dart Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Dark brown clayey sandy peaty TOPSOIL with ES 0.10 0.20 64.04 Soft to firm brown and grey mottled orange slightly sandy slightly gravelly CLAY with occasional rootlets. 0.30 В Gravel is subangular fine to coarse of various lithologies including flagstone. 0.50 ES 0.80 В 1.00 ES 1.05 63.19 Weak dark grey FLAGSTONE, recovered as a clayey angular fine to coarse gravel. 1.20 - 1.30 1.20 50 (25 for 100mm/50 1.30 62.94 No further progress, presumed bedrock. End of Borehole at 1.30m for 0mm)

Remarks:

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.30m and terminated on presumed bedrock. No groundwater encountered. Borehole fitted with a wellpoint on completion.

Logged By:	Checked By:
GD	

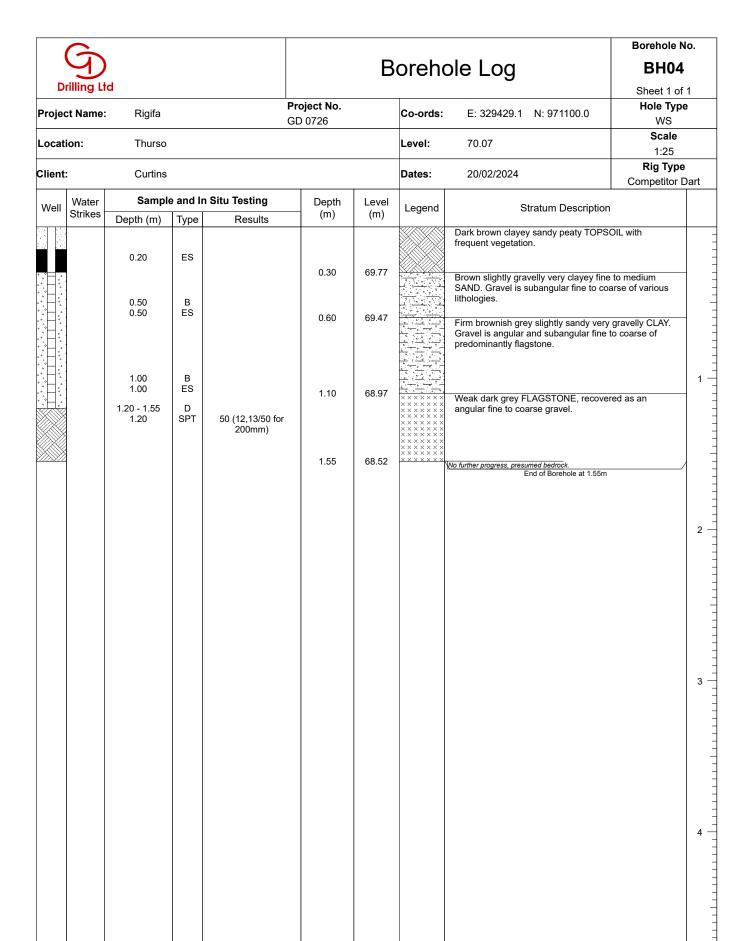
5

									Borehole N	lo.
4)			BH02							
Dri	lling Lt	d							Sheet 1 of	1
Project	Name:	Rigifa			Project No. GD 0726		Co-ords:	E: 329607.7 N: 970928.2	Hole Type WS	•
Locatio	n:	Thurso					Level:	73.16	Scale 1:25	
Client:		Curtins					Dates:	21/02/2024	Rig Type	
	Water	Sample	and I	n Situ Testing	Depth	Level			Competitor D	Jan
	Strikes	Depth (m)	Туре		(m)	(m)	Legend	Stratum Description	1	
		0.10	ES					Dark brown clayey sandy peaty TOPS frequent vegetation.	OIL with	-
		0.50			0.25	72.91		Soft to firm dark brown slightly sandy of Gravel is angular fine to coarse of pred flagstone.	gravelly CLAY. dominantly	- - - -
		0.50 0.50	B ES							- - -
		1.00	В							- - - 1 -
		1.00	ES		1.10	72.06	XXXXXX	Weak dark grey FLAGSTONE, recove	rod as an	' =
		1.20 - 1.65 1.20	D SPT	N=12 (2,3/3,3,3,3)			× × × × × × × × × × × × × × × × × × ×	angular fine to coarse gravel.	red as an	1
							× × × × × × × × × × × × × × × × × × ×			- - -
		1.80 1.90	B SPT	50 (25 for 0mm/50 fo	or 1.90	71.26	*****	No further progress, presumed bedrock.		=======================================
				0mm)				End of Borehole at 1.90m		2
										- - -
										-
										-
										3 —
										=
										=
										_
										=
										=
										=
										3
										-
										-
										-
										-
										=
					1					-

Remarks:

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.90m and terminated on presumed bedrock. No groundwater encountered. Borehole fitted with a wellpoint on completion.

Logged By:	Checked By:
KP	


6								Borehole N	lo.
Drillian Idd		Borehole Log				BH03			
Drilling Ltd	d ————————————————————————————————————			Project No.				Sheet 1 of 1 Hole Type	
Project Name:	Rigifa			GD 0726		Co-ords:	E: 329587.2 N: 970776.5	WS	ð
Location:	Thurso					Level:	70.58	Scale 1:25	
Client:	Curtins					Dates:	21/02/2024	Rig Type	
						Dates.	2170272024	Competitor [Dart
Well Water Strikes	Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	0.10	ES	IXesuits				Dark brown clayey sandy TOPSOIL w vegetation.	ith frequent	_
	0.10			0.20	70.38		Soft brown and grey slightly silty slight	tlv sandv	
						<u>×</u> ×	gravelly CLAY with occasional plant de subangular and angular fine to coarse	ebris. Gravel is	-
	0.50	В				× × -×	predominantly flagstone.		1 —
	0.50	ES				*X			=
						<u> </u>			
	4.00					<u>×</u> -×-			
	1.00 1.00	B ES		1.10	69.48	* * * * * * * *	Weak dark grey FLAGSTONE, recove	arod as an	1 -
	1.20 - 1.65 1.20	D SPT	N=17 (3,2/3,3,5,6)			×××××× ×××××××	angular fine to coarse gravel.	icu as aii	=
	20		(0,2/0,0,0,0)			×××××× ××××××× ×××××××			
						× × × × × × × × × × × × × × × × × × ×			=
						* * * * * * * * * * * * * * * * * * *			
						× × × × × × × × × × × × × × × × × × ×			
	1.90 1.90 - 2.10	B D				×××××× ×××××××			2 -
	1.90	SPT	50 (25 for 100mm/5 for 100mm)	2.10	68.48	*****	No further progress, presumed bedrock.	/	∤ ¯ ∃
							End of Borehole at 2.10m		
									-
									=
									3 -
									=
									_
									4 -
									-
									-
] =
									=
									-
									5 —
							T T		5 —
Remarks:							Logged By: Checked	Ву:	

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 2.10m and terminated on presumed bedrock. Seepage at 1.40m. Borehole fitted with a wellpoint on completion.

Drilling Ltd

DRAFT

ΚP

Remarks:

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.55m and terminated on presumed bedrock. No groundwater encountered. Borehole fitted with a wellpoint on completion.

Logged By:	Checked By:
KP	

5

Borehole No. Borehole Log **BH05** Sheet 1 of 1 Project No. **Hole Type** Co-ords: E: 329352.2 N: 970998.7 Project Name: Rigifa GD 0726 WS Scale Location: Thurso Level: 69.36 1:25 Rig Type Client: Dates: 20/02/2024 Curtins Competitor Dart Sample and In Situ Testing Water Depth Level Well Legend Stratum Description Strikes (m) (m) Depth (m) Type Results Dark brown clayey sandy peaty TOPSOIL with frequent vegetation. 0.20 ES 0.30 69.06 Soft to firm becoming firm brown and grey mottled orange slightly sandy slightly gravelly CLAY with occasional rootlets. Gravel is subangular fine to coarse of various lithologies including flagstone. 0.50 0.50 ES 1.00 В ES 1.20 - 1.65 1.20 SPT N=11 (2,3/3,2,3,3) 1.80 В 1.80 67.56 Stiff dark grey slightly sandy gravelly CLAY. Gravel is angular fine to coarse of predominantly flagstone. 2.00 - 2.35 2.00 50 (8,14/50 for 200mm) 2.10 67.26 Weak dark grey FLAGSTONE, recovered as a clayey angular fine to coarse gravel. 2.35 67.00 No further progress, presumed bedrock. End of Borehole at 2.35m

Remarks:

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 2.35m and terminated on presumed bedrock. Seepage at 1.80m. Borehole fitted with a wellpoint on completion.

Logged By:	Checked By:
KP	

5

(T)					_	_		Borehole N	
Drilling Ltd			Borehole Log			BH06			
Project Name: Rigifa			Project No.		Co-ords: E: 329492.1 N: 970909.2		Sheet 1 of 1 Hole Type WS		
Location:	Thurso					Level:	72.10	Scale 1:25	
Client:	Curtins					Dates:	21/02/2024	Rig Type Competitor [
Well Water Strikes	Sample Depth (m)	and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
	0.10	ES	results				Dark brown clayey sandy TOPSOIL w vegetation.	ith frequent	-
	0.50 0.50	B ES		0.20	71.90		Soft grey slightly gravelly CLAY with o debris. Gravel is subangular and angu coarse of predominantly flagstone.	ccasional plant ılar fine to	1 —
	1.00 1.00 1.20 - 1.65	B ES		0.90	71.20	××××× ×××××× ×××××× ×××××× ×××××× ××××××	Weak dark grey FLAGSTONE, recove angular fine to coarse gravel.	ered as a clayey	1 -
	1.20 - 1.65 1.20 1.80 1.80 - 1.90	SPT B	N=10 (2,2/3,2,3,2)	1.90	70.20	X X X X X X X X X X X X X X X X X X X			
	1.80	SPT	50 (25 for 50mm/50 for 50mm)	or			No further progress, presumed bedrock. End of Borehole at 1.90m		3

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.90m and terminated on presumed bedrock. Water strike at 0.70m and remaining at this level after 20mins. Borehole fitted with a wellpoint on completion.

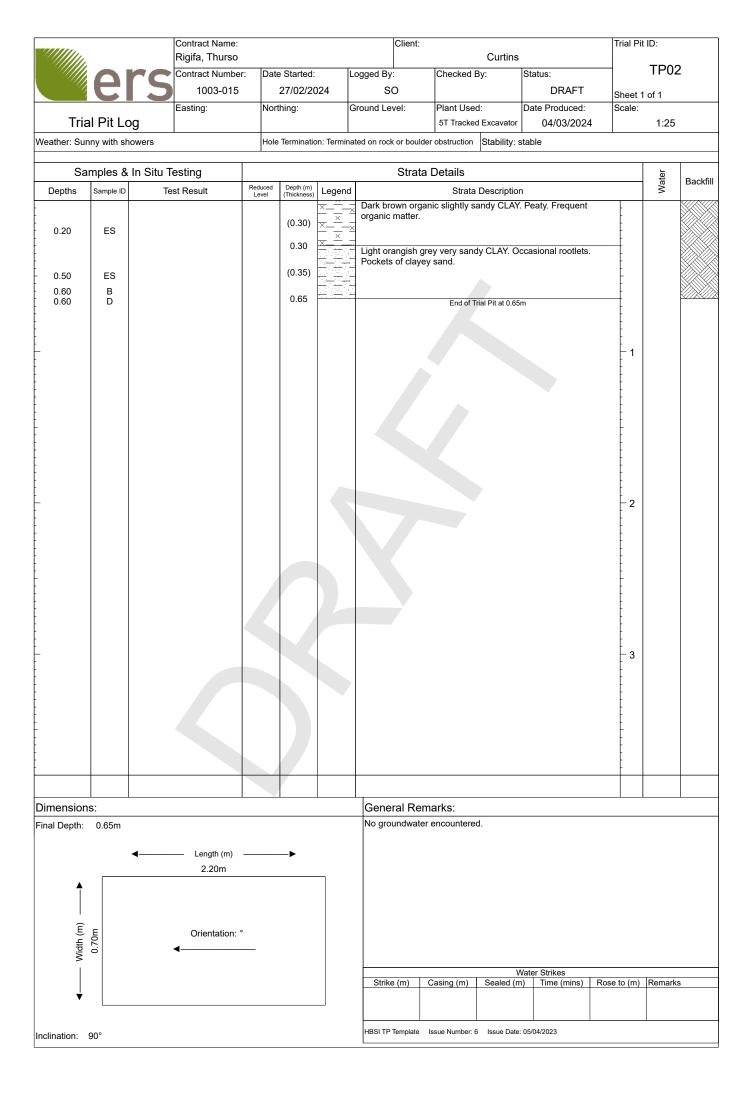
Remarks:

Logged By: Checked By:

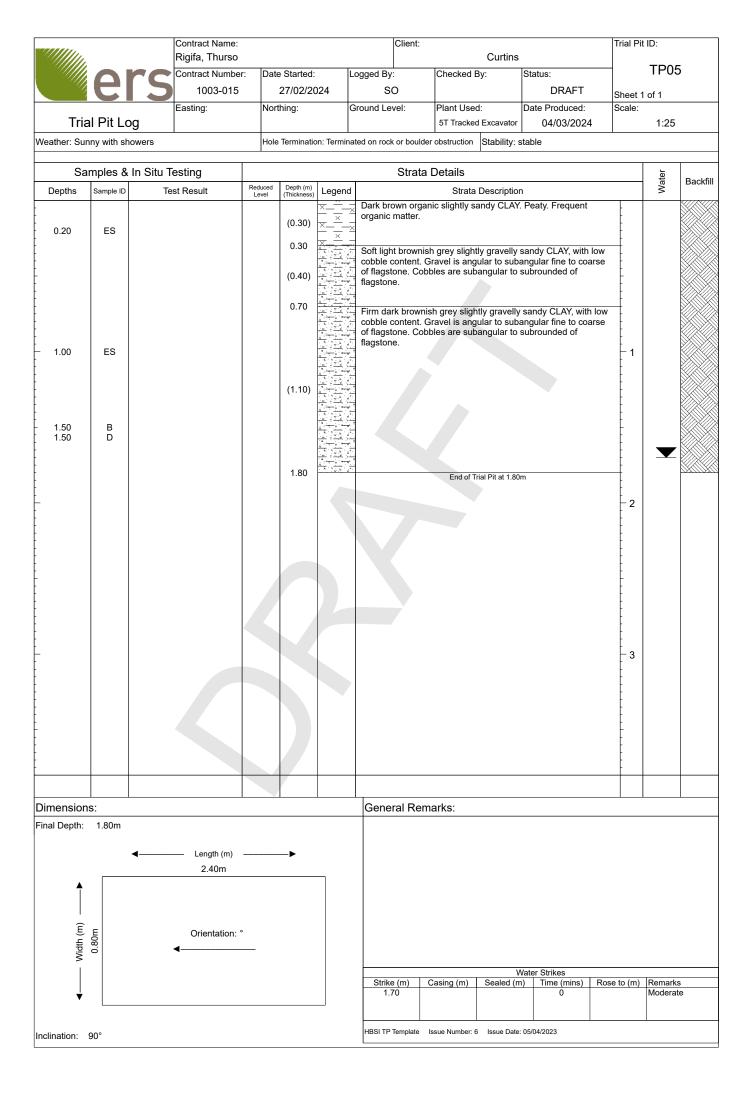
	<u>_</u>								Borehole N	lo.
Delling lad					BH07					
Drilling Ltd		Project No.		1		Sheet 1 of 1 Hole Type				
		3D 0726		Co-ords:	E: 329336.6 N: 971195.3	WS				
Locat	ion:	Thurso					Level:	62.63	Scale 1:25	
Client		Curtins					Dates:	20/02/2024	Rig Type Competitor D	
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description		
24 - 123	Strikes	Depth (m)	Туре	Results	(m)	(m)	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dark brown clayey sandy peaty TOPS		
		0.20	ES		0.00	00.00		frequent vegetation.		- - - -
					0.30	62.33		Firm brown and grey slightly sandy slig CLAY with occasional plant debris. Gra	avel is	
		0.50 0.50	B ES					subangular fine to coarse of various litl	hologies.	
		0.00								
		1.00	ES							1 —
		1.00			1.10	61.53		Stiff dark grey slightly sandy gravelly C	LAY. Gravel is	'
		1.20 - 1.60 1.20 - 1.65	B D					angular fine to coarse of predominantly	/ flagstone.	
		1.20	SPT	N=45 (1,8/9,13,11,12	2)]
		1.65	SPT	50 (25 for 0mm/50 fo 0mm)	1.60 1.65	61.03 60.98	*****	Weak dark grey FLAGSTONE, recover	red as an	1 =
				Onlin)				angular fine to coarse gravel. No further progress, presumed bedrock. End of Borehole at 1.65m		
										2 —
]
										3 —
										4 —
				I		1				5 —

Inspection pit dug to a depth of 1.20m. Borehole progressed with windowless sampling techniques to a depth of 1.65m and terminated on presumed bedrock. Water strike at 0.40m and remaining at this level after 20mins. Borehole fitted with a wellpoint on completion.

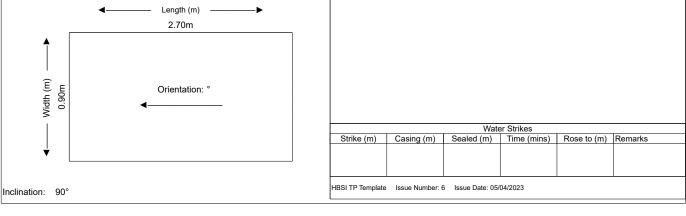
Remarks:


Logged By: Checked By:

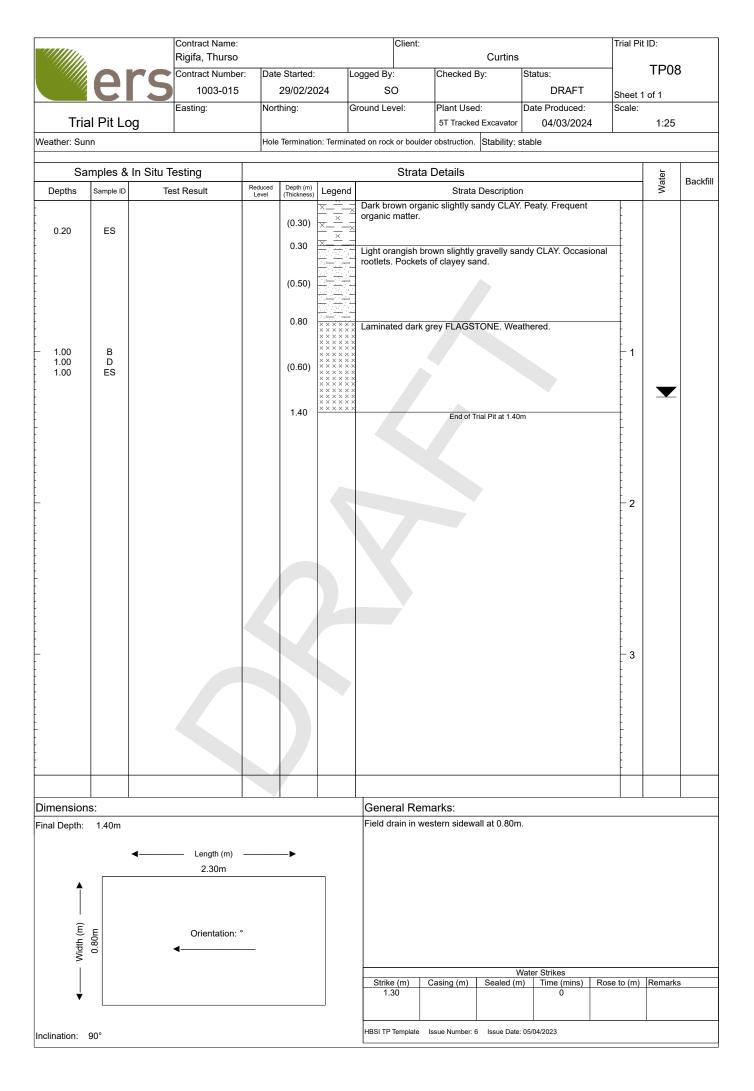
			Contract Name:				Client:				Trial Pit	ID:	
			Rigifa, Thurso					1.	Curtins			SA01	l
		rs	Contract Number		Started:		Logged By:	Checked E	By: S	Status:			
17			1003-015 Easting:		28/02/20 hing:		SO Ground Level:	Plant Used	4. г	DRAFT Date Produced:	Sheet 1 Scale:	of 1	
Tria	l Pit Lo	oa	Lasting.	INOIT	mig.		Giouna Levei.		d Excavator	04/03/2024		1:25	
Weather: Sun				Hole	Termination	n: Termina	ated on rock or boul		Stability: sta				
	-												
Sar	nples &	In Situ T	esting				Strat	a Details				Water	Backfill
Depths	Sample ID	Те	st Result	Reduced Level	Depth (m) (Thickness)	Legend			Description			Š	V///////
					(0.00)	×	Dark brown org organic matter.	ganic slightly sa	andy CLAY. I	Peaty. Frequent	-		
					(0.30)	×	×				-		
					0.30	×	Light brownish	grey slightly gr	ravelly sandy	/ CLAY, with low			
-							of flagstone. Co	. Gravei is ang obbles are sub	ular to subar angular to si	ngular fine to coa ubrounded of	arse -		
							flagstone.				-		
					(0.80)						-		
							:				-		
_							•				- 1		
					1.10			End of Tr	rial Pit at 1.10m				
											[-		
											-		
-											- -		
											-		
											-		
											- - -		
_											- 2		
											-		
											- - -		
											-		
-											-		
											-		
											- - -		
											-		
· -											- 3		
											-		
											-		
											Ė		
-											-		
											-		
											-		
Dimensions	s:						General Re						
Final Depth:	1.10m						No groundwat	er encountered	d. Soakaway	test carried out	from base of	pit.	
		◄	— Length (m)		 ▶								
	_		1.10m			_							
^													
Œ.	ε		Orientation: °										
Width (m)	0.40m		√										
≫									\\/-	ater Strikes			
							Strike (m)	Casing (m)	Sealed (m)		Rose to (m)	Remarks	3
*													
							HRSI TD Tamplets	Issue Number: 6	Legua Data: 0	15/04/2023			
Inclination: 9	90°						TIDOL LE TEMPIATE	issue inuffiber. 6	, issue Date: 0	101U41ZUZU			

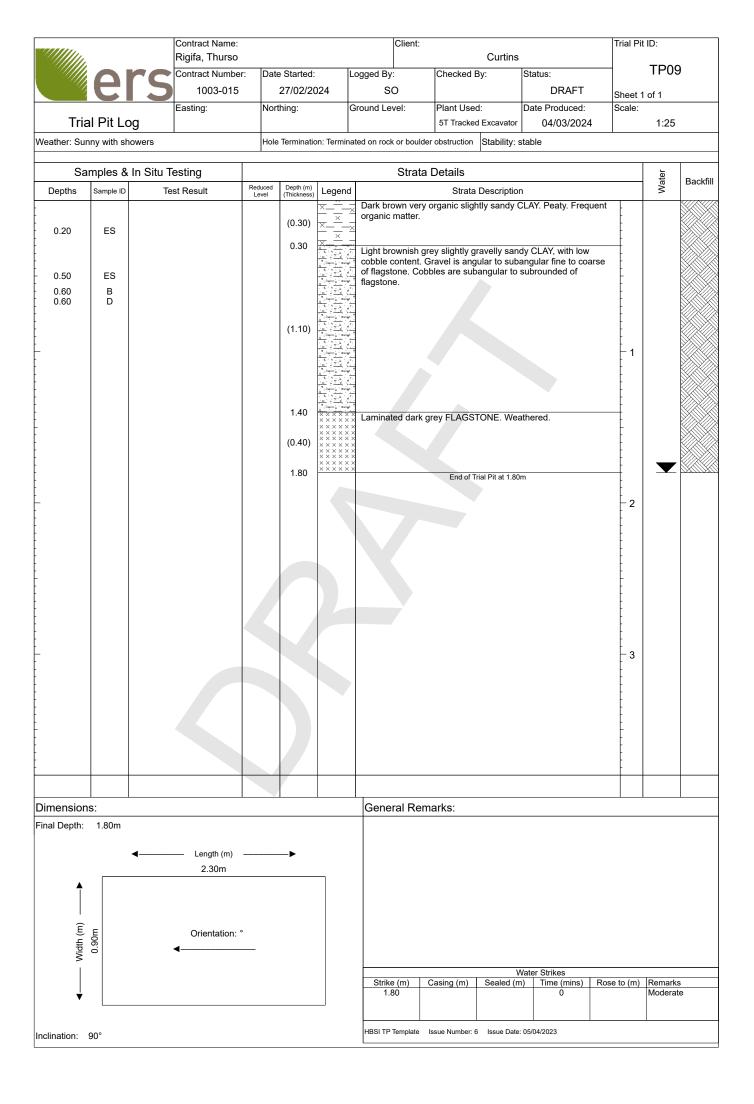

			Contract Name:				Client:				Trial F	Pit ID:	
	_		Rigifa, Thurso						Curtins			210	2
		rc	Contract Number	r: Da	te Started:		_ogged By:	Checked	By:	Status:		SA0	_
			1003-015		28/02/20		SO			DRAFT		1 of 1	
	I D:+ '		Easting:	No	rthing:	C	Ground Level:	Plant Use		Date Produced:	Scale		
	l Pit Lo								d Excavator	04/03/2024	1	1:25	
Weather: Sun	ny with sh	owers		Hol	e Termination	on: Termina	ated on rock or boul	der obstruction	Stability: sta	able			
Sor	mples 8	In Situ To	octing				Strat	a Details				Τ.	
				Reduced	Depth (m)	1			Decemination			Water	Backfill
Depths	Sample ID	ie	st Result	Level	(Thickness)	Legend			Description	Peaty. Frequent		>	\//\&\//\&
					1	^	organic matter.	jarno ongritty c	andy OLM	outy. I roquoni	[
					(0.35)	×	×				[
					0.35	×	×						
							cobble content	. Gravel is and	gular to subar	CLAY, with low ngular fine to coa	arse -		
-							of flagstone. Co	obbles are sul	pangular to si	ubrounded of	-		
					0.60		Dark brownish	grey slightly o	ravelly sandy	y CLAY, with low			
							cobble content of flagstone. Co	. Gravel is and	gular to subar	ngular fine to coa	arse		
					(0.60)		flagstone.	SSSIOS GIO GGI	sangular to o	abroariada di			
_					(5155)		9				- 1		
							.						
					1.20		1	End of 3	Frial Pit at 1.20m				
								2.1.4 0.1			-		
											[
=											-		
											-		
											-		
											-		
											-		
											- 2		
											-		
											-		
-											-		
											-		
											-		
											[
											-		
-											- 3		
											-		
											Ē		
											Ē		
<u>-</u>											[
											ļ		
											ţ		
													-
Dimensions	s:						General Re	marks:					
Final Depth:	1.20m						No groundwat	er encountere	d. Soakaway	test carried out	from base of	of pit.	
		◀	— Length (m)		▶								
			1.30m										
1													
	_		0										
Width (m)	0.40m		Orientation: °	•									
Wid	o O		◀										
							6: "			ater Strikes		\ le	
↓ ▼							Strike (m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m) Remark	s
•													
							UDOLTOT	January Mr. 1		05/04/0000	<u> </u>		
Inclination: 9	90°						HBSI TP Template	Issue Number:	b Issue Date: 0	J5/U4/2U23			

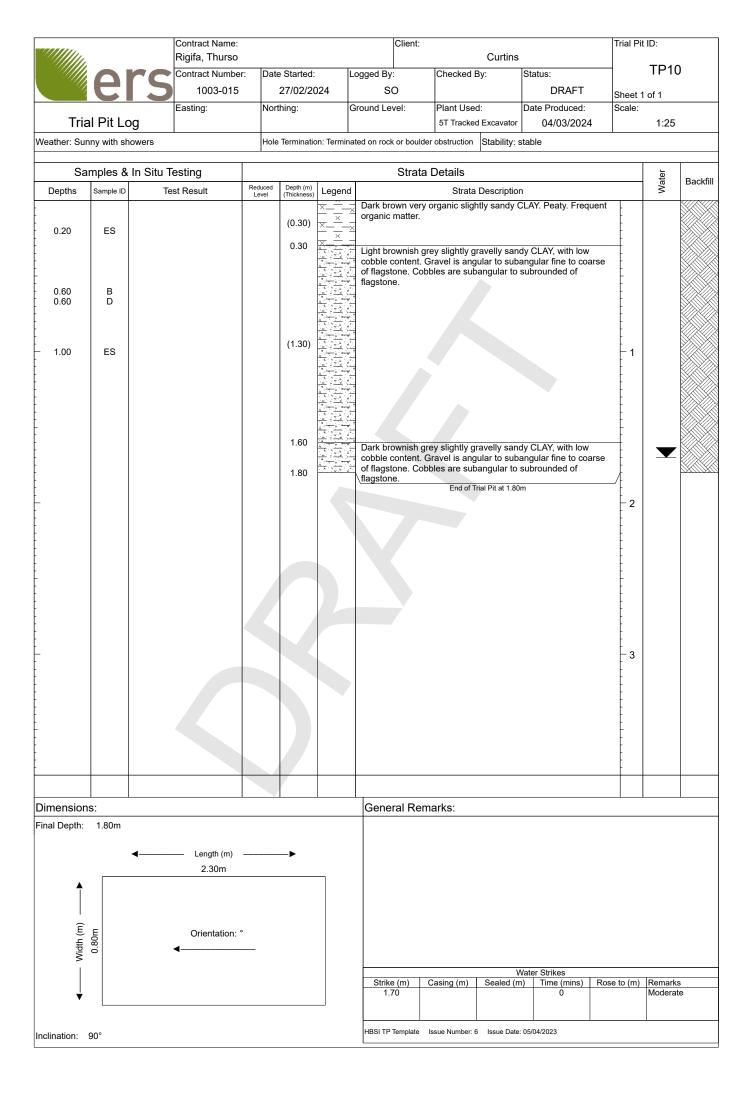
			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial Pi	ID:	
			Contract Number	: Dat	e Started:		Logged By	<u> </u>	Checked E		Status:		TP0	1
	\mathbf{e}	5	1003-015		27/02/20		S			, l	DRAFT	Sheet 1	of 1	
			Easting:	Nor	thing:		Ground Lev	vel:	Plant Used	d:	Date Produced:	Scale:	01 1	
Tria	al Pit Lo	g							5T Tracked	l Excavator	04/03/2024		1:25	
Weather: Sur	nny with sh	owers		Hole	Termination	on: Termir	nated on rock	or bould	der obstruction	Stability: st	able			
S-0	malac 9	In Situ Te	acting					Strot	a Details					
Depths	Sample ID		st Result	Reduced	Depth (m) (Thickness)	Legend	4	Strate		Description			Water	Backfill
-	Cumpic ib	10.	3t result	Level	(Thickness)	×_^_	Dark bro	own org		-	Peaty. Frequent	-		
-					(0.30)	<u>×_×</u> _	organic	matter.						
0.20	ES				0.30	<u>×</u> ×								
-							cobble c	content.	Gravel is ang	ular to suba	y CLAY, with low ngular fine to coa	rse		
0.50	ES						of flagst	one. Co e.	obbles are sub	angular to s	ubrounded of	F		
0.60 0.60	B D											ļ.		
					(0.90)							-		
- -														
- -												- 1		
- -												-		
-					1.20				End of To	rial Pit at 1.20m	1			2771177
- -														
- - -												F		
- -														
- - -												-		
- -												ļ.		
- -												- 2		
-														
- - -												Ī		
- -														
- - -												F		
- -												ļ		
- -												Į.		
-														
- -												- 3		
- -												ļ.		
-												[
- -														
- - -												Ė		
- -														
-														
Dimension	s:						Gene	ral Re	marks:					
Final Depth:	1.20m						No gro	undwate	er encountered	d.				
		√	— Length (m)		 ▶									
			2.60m											
A														
- (F	_		Out-out-11 o											
Width (m)	0.80m		Orientation: °											
Wic			-											
							Strike	e (m)	Casing (m)	Sealed (m)	ater Strikes Time (mins)	Rose to (m)	Remark	s
₩														
Inclination:	90°						HBSI TP	Template	Issue Number: 6	Issue Date:	05/04/2023			



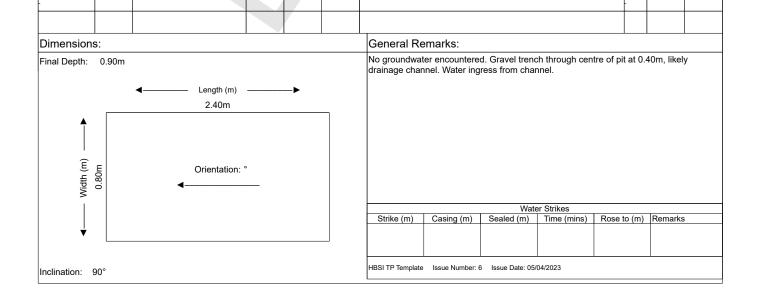
		1.	O t t N				loi:				Tri-1 Dit	D.	
			Contract Name: Rigifa, Thurso				Clien	t:	Curtins		Trial Pit	D:	
			Contract Number	: Dat	e Started:	li	_ogged By:	Checked		Status:		TP0	3
	er		1003-015		27/02/20		SO		, l	DRAFT	Chart 1	-f 1	
			Easting:		thing:		Ground Level:	Plant Use	d·	Date Produced:	Sheet 1 Scale:	01 1	
Tria	l Pit Log		_uoug.		g.		5.5aa 25.5		d Excavator	04/03/2024		1:25	
Weather: Sun	ny with shov	vers		Hole	Termination	on: Termin	ated on rock or bo	ulder obstruction	Stability: st	able			
Sar	mples & Ir	n Situ Te	esting				Stra	nta Details				- je	T
Depths	Sample ID	Tes	t Result	Reduced Level	Depth (m) (Thickness)	Legend		Strata	Description			Water	Backfill
						×	Dark brown o	rganic slightly s	andy CLAY.	Peaty. Frequent	-		
- 0.20	ES				(0.30)	×	organic matte	1.					
0.20					0.30	X X	Link barrair						
-							cobble conter	it. Gravel is and	jular to suba	y CLAY, with low ngular fine to coa	rse		
0.50	ES						of flagstone.	Cobbles are sub	angular to s	ubrounded of	- 1		
-							ilagstorie.				[]		
-					(0.90)								
-					(0.00)								
-													
-							1				- 1		
[1.20								
- 1.25 1.25	B D				1.30	× × × × ×	Laminated da	rk grey FLAGS					
1.25								End of I	rial Pit at 1.30m	1			
- =											-		
-													
											[
_													
-											-		
-											- 2		
-													
_											[]		
-													
-											- 1		
-													
-											ļ		
[[]		
_													
-											- 3		
-													
-													
[[]		
_													
- -											ļ		
[ŧ l		
Dimensions	∟ 3:				1		General R	emarks:			1 1		
Final Depth:								ater encountere	d.				
			— Length (m)		▶								
			2.60m			_							
^													
F F	_		0-: 1 :: -										
Width (m)	0.80m		Orientation: °										
Wid	0	•											
							61.71	10-: /:		ater Strikes	D () 1	D	
							Strike (m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m)	Remark	S
•													
Inclination: 9	an°						HBSI TP Templa	e Issue Number:	S Issue Date:	05/04/2023			
oauon. S													

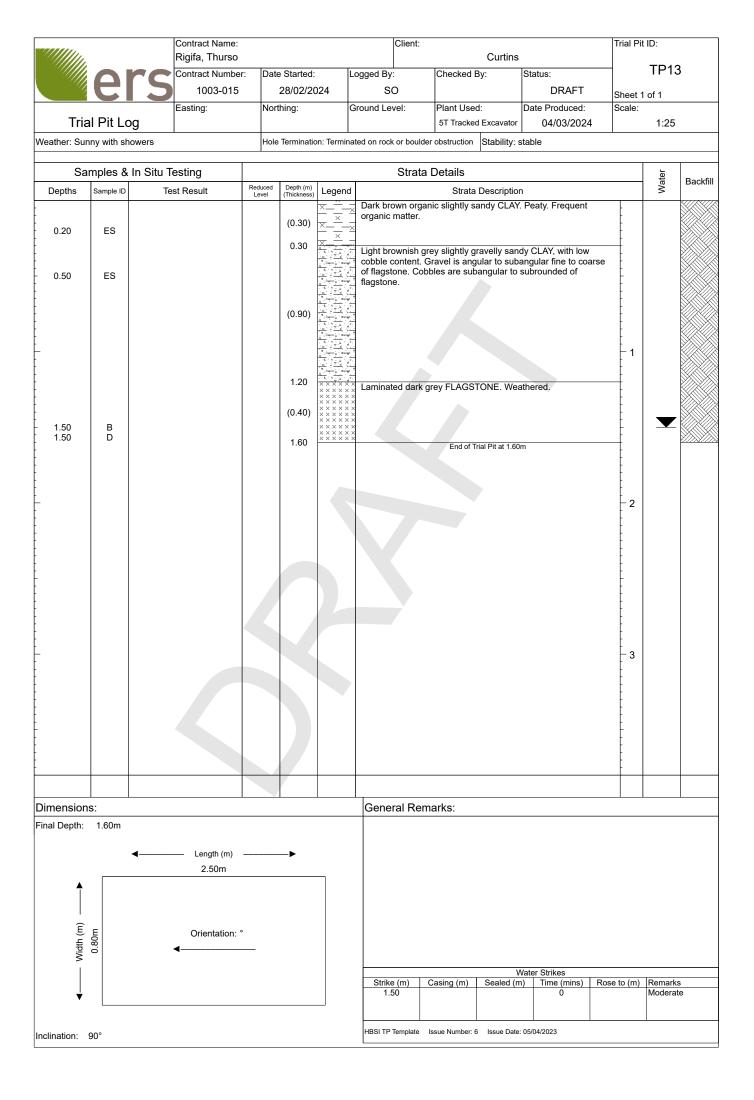

Γ			T -					1 -						
			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial Pit	ID:	
			Contract Number	·· Dat	e Started:		Logged By		Checked B		Status:		TP04	4
		15	1003-015		28/02/20		S		Criecked D	у.	DRAFT			
7			Easting:		thing:		Ground Le		Plant Used		Date Produced:	Sheet 1 Scale:	of 1	
Tria	l Pit Lo	oa	Lasting.	INOI	umg.		Olouliu Le	vei.	5T Tracked		04/03/2024		1:25	
Weather: Sun				Hole	e Terminatio	n: Termin	ated on rock	c or boulde		Stability: s		·	0	
	,									otasty. s				
Sai	mples &	In Situ Te	esting					Strata	Details				ter	D 1511
Depths	Sample ID	Te	st Result	Reduced Level	Depth (m) (Thickness)	Legend	i		Strata	Description]		Water	Backfill
-					,	×_^_			nic slightly sa	ndy CLAY.	Peaty. Frequent	-		
0.20	ES					××	organic	matter.				Ī		
0.20					0.25	X	Light or	angish br	own very san	dy CLAY. (Occasional rootlet	s		
-												-		
- 0.50	ES											-		
_					(0.65)							[
-												-		
-							<u> </u>					-		
-	_				0.90	× × × × × × ×	Laminat	ted dark (grey FLAGST	ONE. Wea	thered.			
- 1.00 1.00	B D				(0.30)	×××××	×					- 1		
-					1.20	× × × × ×						-		
-					1.20				End of Tri	al Pit at 1.20r	n	-		
-												-		
-												-		
_												[
-												-		
-												-		
- -												-		
_												- 2		
_												-		
-												-		
-												-		
-												-		
-												-		
<u>-</u> -												-		
-												-		
-												-		
-												- 3		
-							,					[
-												-		
- -												-		
-												-		
<u>-</u>												<u> </u>		
- -												-		
Dimonolo					1		0000	rol Dan	norke:					
Dimension: Final Depth:								ral Ren	encountered	<u> </u>				
гшаг ⊔ертп:	1.20m						110 910		SHOUGHTERE					
		◄	— Length (m)		▶									
			2.30m			_								
A			<u> </u>											
Width (m)	0.70m		Orientation: °											
Widt	0		◄											
											/ater Strikes			
							Strike	e (m)	Casing (m)	Sealed (m) Time (mins)	Rose to (m)	Remark	s
•														
							LIDG: T-	Tomorio	Janua Mussa	Janes C. 1	05/04/2022		1	
Inclination:	90°						HBSI TP	remplate	Issue Number: 6	issue Date:	UO/U4/2023			




		Contract Name: Rigifa, Thurso	1-			Client:	Curtins		Trial Pit	ID:	6
	er	Contract Number		e Started: 27/02/20		ogged By: SO	Checked By:	Status: DRAFT			U
1		Easting:		27/02/20 thing:		Ground Level:	Plant Used:	Date Produced:	Sheet 1 Scale:	of 1	
Tria	al Pit Log	Lasting.		umig.		ordana Edver.	5T Tracked Excavator		Ocaic.	1:25	
	nny with showers		Hole	Termination	on: Termina	ated on rock or boulder	obstruction Stability:	stable			
Sa	amples & In Sit	tu Testina				Strata I	Details			<u>.</u>	
Depths	Sample ID	Test Result	Reduced Level	Depth (m) (Thickness)	Legend		Strata Descriptio	n		Water	Backfill
			20701	(111101111000)	××	Dark brown organ	ic slightly sandy CLAY	. Peaty. Frequent	-		
0.20	ES			(0.40)	××	organic matter.					
0.20				(0.40)	××	3			-		
				0.40	×	Dark brownish gro	y slightly gravelly san	dy CLAV with low	_		
0.50	ES			(0.30)		cobble content. Gi	ravel is angular to sub	angular fine to coarse	-		
				(0.50)		of flagstone. Cobb flagstone.	oles are subangular to	subrounded of	-		
				0.70	××××××	-	ey FLAGSTONE. We	athered.	_		
					*****				-		
- 1.00	В			(0.50)	*****				- 1		
1.00	D				*****				- '		
				1.20	*****		End of Trial Pit at 1.20)m	_		
									-		
									-		
									-		
									-		
									[
									-		
_									- 2		
									-		
									-		
									-		
									-		
•									-		
									-		
									-		
									-		
_									- 3		
									-		
									-		
									-		
									-		
									-		
Dimensior				1		General Rema	arks:				
Final Depth:						No groundwater					
- 26411											
	← —	Length (m)		▶							
		2.70m			_						
^											
	1				1	1					

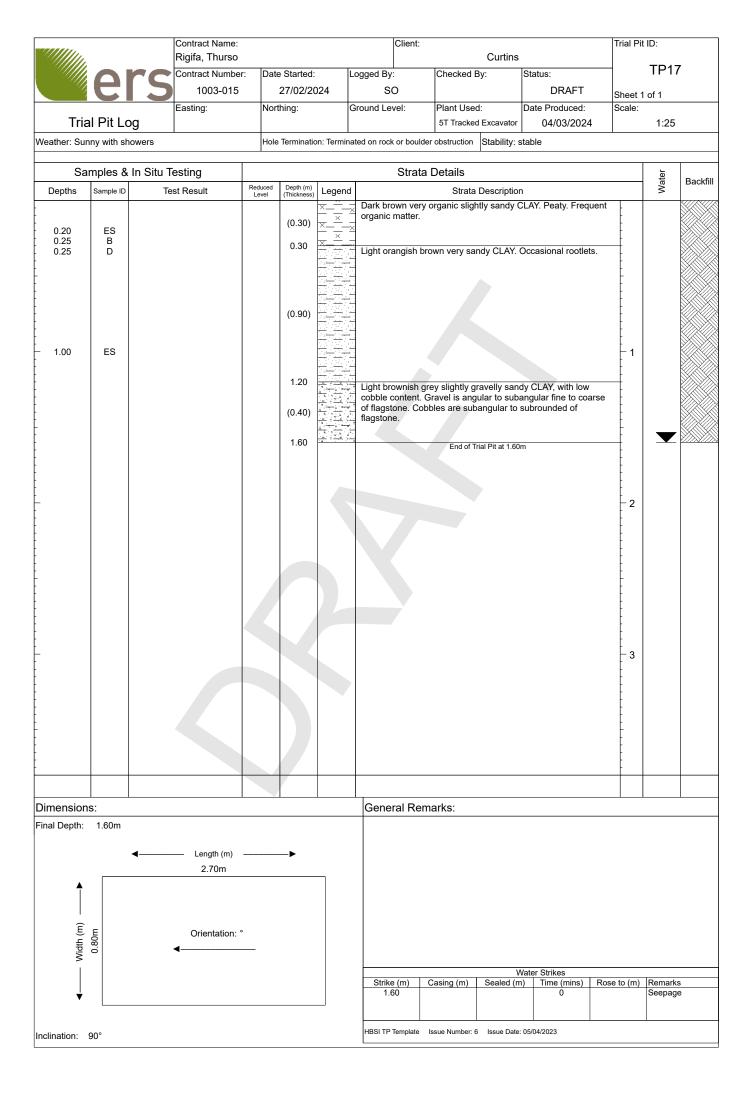
			Contract Name:					Client:		- · ·		Trial Pit	ID:	
	0 14		Rigifa, Thurso Contract Number	· Date	e Started:	- Iı	ogged By:		Checked By	Curtins	Status:	4	TP07	7
	er	5	1003-015		29/02/20		S(Checked by	у.	DRAFT	0, ,,		
1		<u> </u>	Easting:		hing:		Ground Lev		Plant Used:		Date Produced:	Sheet 1 Scale:	OT 1	
Tria	al Pit Log		_		_				5T Tracked	Excavator	04/03/2024		1:25	
Weather: Sur	nny			Hole	Termination	on: Termina	ated on rock	or boulder	obstruction	Stability: s	table			
Sa	mples & In	Situ Te	esting					Strata	Details					
Depths	Sample ID	Tes	st Result	Reduced Level	Depth (m) (Thickness)	Legend			Strata [Description	l		Water	Backfill
0.10	ES					X	Dark bro	wn organ	ic slightly sa	ndy CLAY.	Peaty. Frequent	-		
					0.15		Light ora	angish gre content. G one. Cobb	ravel is angu	lar to subaingular to s	y CLAY, with low angular fine to coarse subrounded of	- - - -		
0.50	ES				(0.95)							- - - - - -		
- 1.00 1.00	B D				1.10	×××××	Laminat	ed dark g	rey FLAGST0			1		
					1.20	××××	×		-	al Pit at 1.20r		- 2		
-												3		
												- - - - - -		
Dimension	s.						Gene	ral Rem	arks [.]					
Final Depth:									encountered					
	4 -		— Length (m) 2.60m											
Width (m)	0.90m		Orientation: °											
ĺ							2: "	()	i / >		/ater Strikes	4: ()	D- '	
\							Strike	(m) (Casing (m)	Sealed (m) Time (mins) Ros	se to (m)	Remark	S
							HRQI TD	Template !	ssue Number: 6	Issue Date:	05/04/2023			
Inclination:	90°									20 Date.				

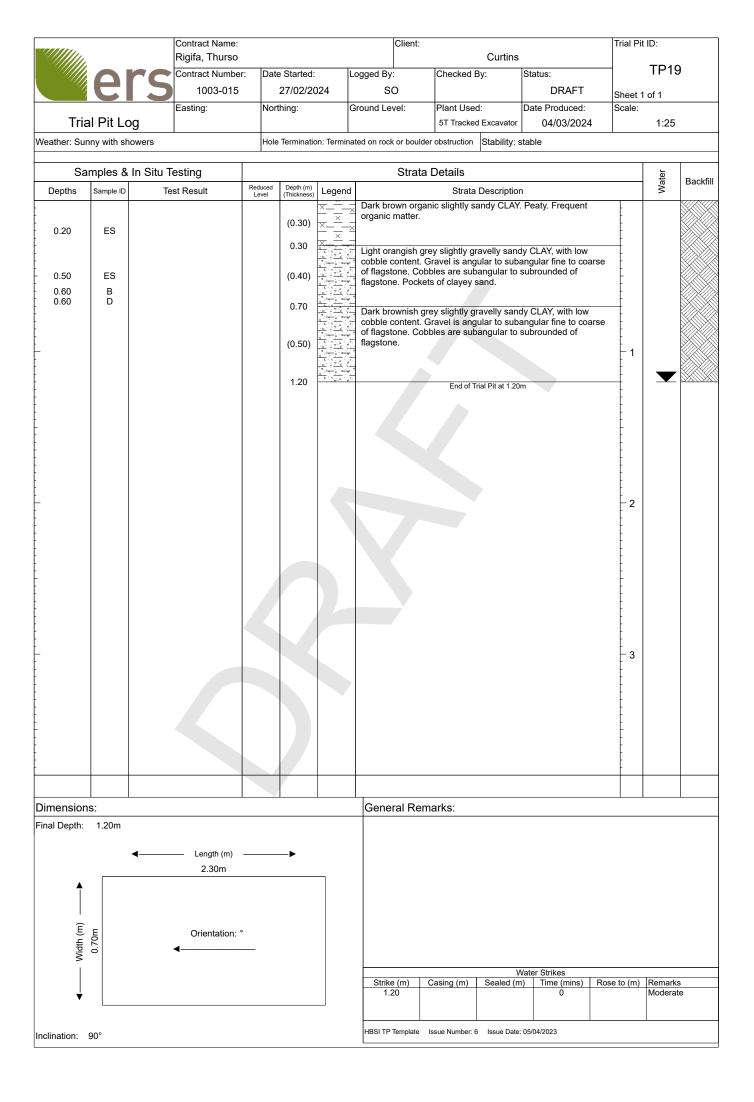




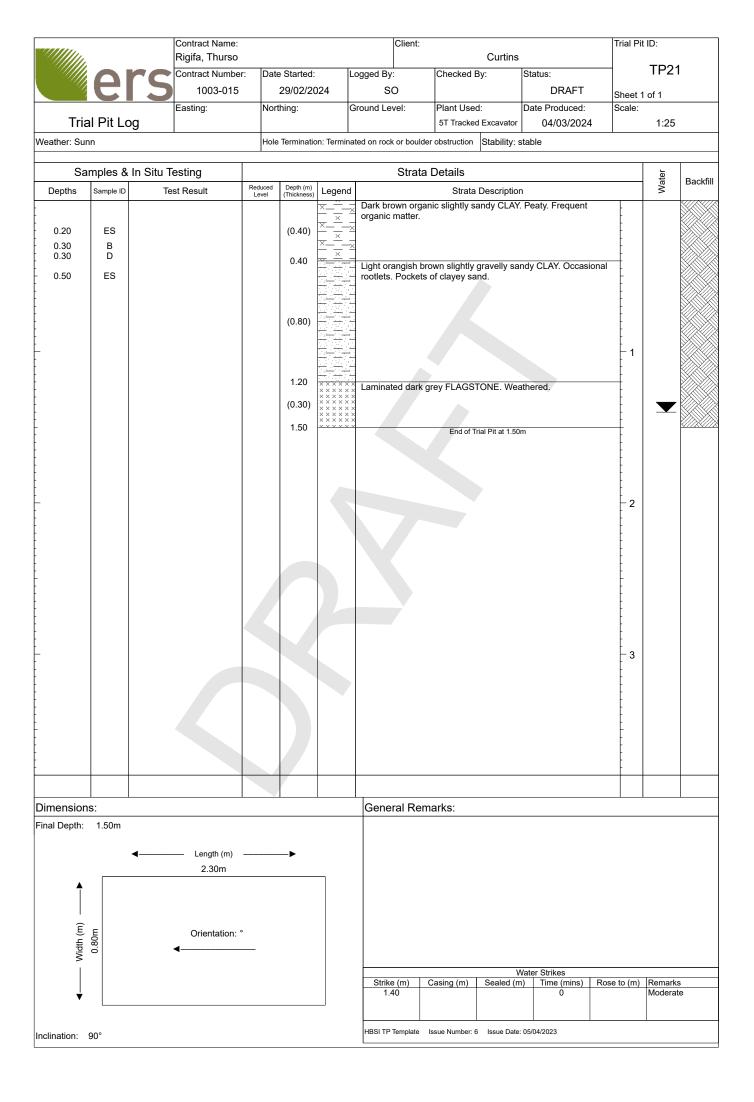
			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial Pit	ID:	
			Contract Number	: Date	e Started:	1	Logged By:		Checked E		Status:		TP11	
	\mathbf{e}	5	1003-015		27/02/20		SC			,	DRAFT	Sheet 1	of 1	
			Easting:	Nor	thing:		Ground Lev	el:	Plant Used	l: [Date Produced:	Scale:	01 1	
Tria	al Pit Lo	g							5T Tracked	Excavator	04/03/2024		1:25	
Weather: Sur	nny with sh	owers		Hole	Termination	on: Termin	ated on rock	or bould	der obstruction	Stability: st	able			
	mples 0	In Situ Te	nating					Ctrot	a Details				_	
Depths	Sample ID		st Result	Reduced	Depth (m) (Thickness)	Legend		Strate		Description			Water	Backfill
Deptils -	Sample ID	16:	si Resuit	Level	(Thickness)	×_^_		wn orga			Peaty. Frequent	L		X//XX//X
					(0.30)	<u>×</u> ×	organic r	natter.	0 ,	,	, ,	-		
0.20	ES				0.30	<u> </u>								
- -					0.50		Light bro	wnish (ontent.	grey slightly gr Gravel is ang	avelly sandy ular to subai	/ CLAY, with low ngular fine to coa	rse		
- -							of flagsto	ne. Co	bbles are sub ets of clayey g	angular to s	ubrounded of	-		
0.60 0.60	B D						nagotoni). I OOK	oto or olayoy g	iavoi.		[
- 0.00					(0.90)		0					-		
-							•					-		
- - 1.00	ES						* .					- - 1		
- - -							9							
-					1.20				End of Tr	ial Pit at 1.20m		-		
- -												Ī		
- -												-		
- - -												Ę		
												-		
- - -												Ė		
- -												- - 2		
-														
- -												-		
- -														
-												-		
- -												ţ		
- -												-		
- -												Ė		
- - —												- 3		
-												-		
- - -							>					Ę		
-												-		
- - -												-		
-												-		
- - -												Ė		
Dimension	e.				1		Gener	al Da	marke:					
Final Depth:	1.20m								er encountered	I.				
i iliai Deptii.	1.20111													
		◄	— Length (m)		▶									
			2.60m			_								
1														
(E)	m _O		Orientation: °											
Width (m)	0.90m		◄											
>										Wa	ater Strikes			
							Strike	(m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m)	Remarks	S
•														
							HRSI TP T	emplate	Issue Number: 6	Issue Date: 0	15/04/2023		1	
Inclination:	90°						I DOI IF I	ompiate	.ooud (vuilibel: 0	issue Date: (

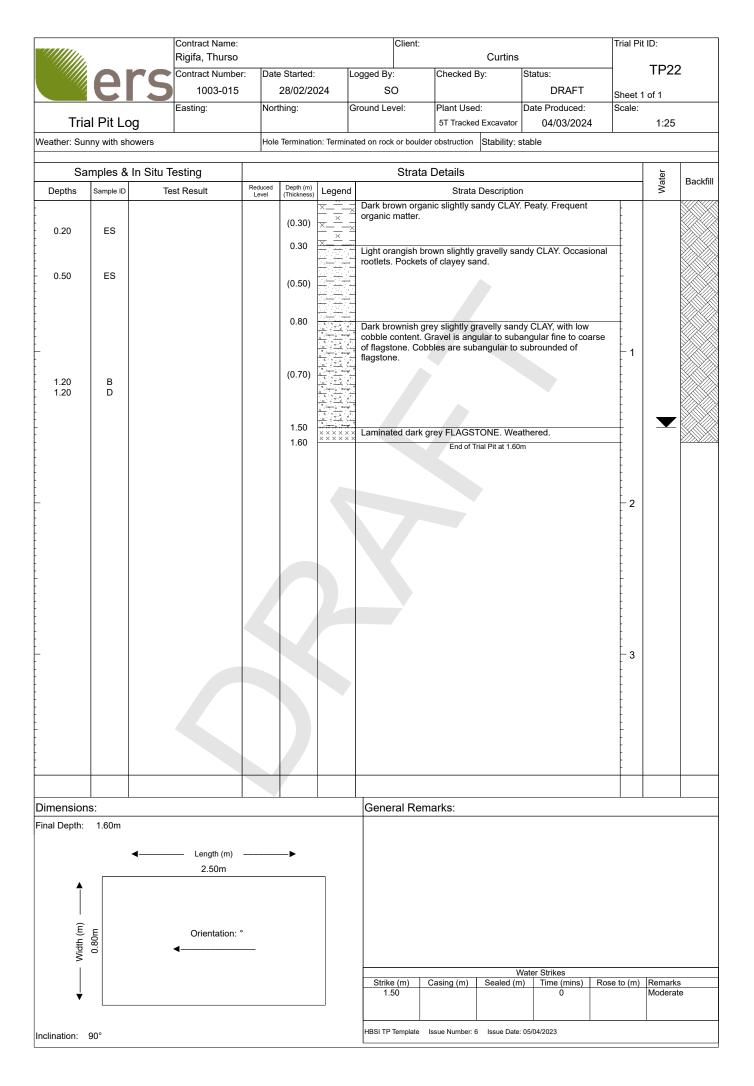
			Contract Name Rigifa, Thurs					Clie	nt:	Curtins	S	Trial Pit	ID:	
	OK		Contract Numb	er:	Date	Started:	l	Logged By:	Checke	d By:	Status:	1	TP1	2
	EI		1003-01	5	2	29/02/20	24	so			DRAFT	Sheet 1	of 1	
			Easting:		North	ning:	(Ground Level:	Plant U	sed:	Date Produced:	Scale:		
Tria	al Pit Log								5T Trac	ked Excavator	04/03/2024		1:25	
ather: Sur	n				Hole '	Terminatio	n: Termin	ated on rock or bo	oulder obstruction	on. Stability:	stable			
Sa	mples & In	Situ 7	Testing					Str	ata Details					
Depths	Sample ID	Te	est Result		uced vel	Depth (m) (Thickness)	Legend	1	Stra	ta Descriptio	on		Water	Back
							×	Dark brown o		sandy CLA	Y. Peaty. Frequent	-		
0.20	ES						××	× Organic matt	71.					
						0.25	X	Light orangis	h grey slightly	gravelly san	dy CLAY, with low	-		
								of flagstone.	Cobbles are s	ubangular to	pangular fine to coarse subrounded of	[
0.50	ES					(0.45)		flagstone. Po	ckets of claye	y sand.		-		
0.60 0.60	B D					0.70		*- *				-		
						0.70	×××××	Laminated da	ark grey FLAC	STONE. We	athered.			
						0.90	××××× ×××××	×	End	f Trial Pit at 0.9	0m	_		
									End	i illai Fit at 0.9	om	- 1		
												-		
												-		
												-		
												-		
												-		
												- 2		
												[
												-		
												-		
												[]		


- 3


			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial P	it ID:	
			Contract Number	r: Dat	e Started:		Logged By:		Checked E		Status:		TP1	4
	ei	5	1003-015		28/02/20		SC				DRAFT	Sheet	1 of 1	
Tria	I Pit Lo		Easting:	Nor	thing:		Ground Lev	rel:	Plant Used	d: d Excavator	Date Produced: 04/03/2024	Scale:		
Weather: Sun	ny with sho	wers		Hole	e Terminatio	on: Termin	ated on rock	or bould	ler obstruction	Stability: s	table	'		
Sai	mples &	In Situ T	estina					Strata	a Details					
Depths	Sample ID		st Result	Reduced Level	Depth (m) (Thickness)	Legeno	1	Otrate		Description			Water	Backfill
				ECVCI	(mickiness)	×_^_		wn orga		-	Peaty. Frequent	Ŀ		
0.20	ES				(0.30)	××	× Organic i	пацег.				-		
					0.30	<u>x</u>	Light ora	ıngish b	rown slightly	gravelly sar	ndy CLAY. Occasi	onal		
							rootlets.	Pockets	s of clayey sa	nd.		Ė		
0.60	В				(0.60)							-		
0.60	D											[-		
-					0.90									
1.00	ES					××××× ×××××	â	ed dark	grey FLAGS	IONE. Wea	thered.	- 1		
<u></u>					1.10	00000			End of T	rial Pit at 1.10r	n			Y//////
												Ę		
-												Ė		
-												-		
-												-		
-												-		
						4						- 2		
-														
												Ę.		
-												-		
-												-		
-												-		
-												-		
												Ė		
-												- 3		
-							,					-		
												Ė		
-												-		
												F		
												Ē		
Dimension	s:				1	1	Gener	al Rer	marks:					
Final Depth:							No grou	ındwate	r encountere	d.				
		4	— Length (m)											
			2.65m											
A														
Œ.	E		Orientation: °											
Width (m)	0.80m		√											
>											ater Strikes			
							Strike	(m)	Casing (m)	Sealed (m) Time (mins)	Rose to (m)	Remark	(S
Inclination:	90°						HBSI TP 1	emplate	Issue Number: 6	Issue Date:	05/04/2023			

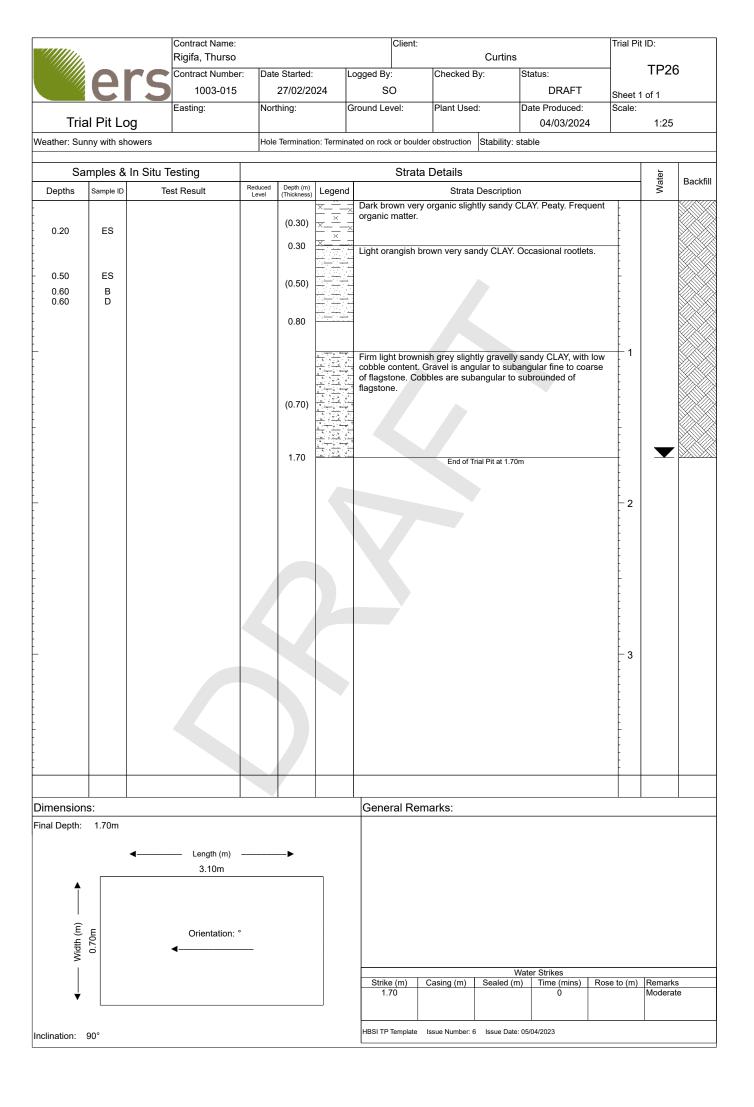
			Contract Name: Rigifa, Thurso				Client	:	Curtins		Trial Pit	ID:	
			Contract Number	·· Dat	e Started:	- I	Logged By:	Checked I		Status:		TP15	5
	e	15	1003-015		28/02/20		SO	Oncored	Jy.	DRAFT			
			Easting:		thing:		Ground Level:	Plant Use	d:	Date Produced:	Sheet 1 Scale:	of 1	
Tria	al Pit Lo				9-				d Excavator	04/03/2024		1:25	
Weather: Sur	nny with sh	owers		Hole	Termination	n: Termin	ated on rock or bou	ılder obstruction	Stability: s	table			
0-	1 0	l 0:4 T-	4:	•			Ct	4- D-4-il-					
Depths	Sample ID	In Situ Te	_	Reduced	Depth (m)			ta Details	Description			Water	Backfill
Deptns -	Sample ID		st Result	Level	Depth (m) (Thickness)	Legend			Description andy CLAY.	Peaty. Frequent		>	X//XX//X
-					(0.30)	×	organic matter		-,		[
0.20	ES					××							
-					0.30		Light brownish	grey slightly g	ravelly sand	ly CLAY, with low ingular fine to coar			
- 0.50	ES						🛚 of flagstone. C	cobbles are sub	angular to s	subrounded of	-		
- 0.60	В				(0.70)		flagstone.						
0.60	D				(0.70)						E I		
-											<u> </u>		
- -							<u></u>				1.		
-					1.00 1.05	××××	Laminated dar	k grey FLAGS	TONE. Wea	thered.	 1		
-								2.10 01 1			<u> </u>		
-													
-											E		
<u> </u>											-		
- -													
-											E I		
- - -											[]		
- -											- 2		
-													
- -											E I		
- -											[]		
- -													
-													
- - -											[]		
- -													
-													
- -											-3		
-											<u> </u>		
-							,						
-											E		
- =											-		
-													
- -											[
Dimension	s:						General Re	emarks:			1 1		
	1.05m							ter encountere	d.				
F													
		◄	Length (m)		▶								
			2.30m			\neg							
1													
Œ	Ē		Orientation: °										
Width (m)	0.80m		◀										
>									14	ater Strikes			
							Strike (m)	Casing (m)	Sealed (m		Rose to (m)	Remarks	3
¥													
Inclination:	90°						HBSI TP Template	e Issue Number: 6	S Issue Date:	05/04/2023			


												1=		
			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial Pit	ID:	
			Contract Number	: Date	e Started:	ļ.	_ogged By:		Checked E		Status:		TP16	3
	C		1003-015		28/02/20		SC				DRAFT	Sheet 1	of 1	
Tria	ıl Pit Lo	og	Easting:	Nort	hing:	(Ground Lev	/el:	Plant Used	l: Excavator	Date Produced: 04/03/2024	Scale:	1:25	
Weather: Sun				Hole	Termination	on: Termin	ated on rock	or bould	ler obstruction	Stability: s	table			
Sa	mples 9	In Situ Te	acting					Strate	a Details					
Depths	Sample ID		st Result	Reduced	Depth (m) (Thickness)	Legend		Sual		Description			Water	Backfill
-	Cumple 15	10.	ot result	Level	(Thickness)	×_^_	Dark bro	wn orga		-	Frequent organic	-		
- - - 0.20	ES				(0.30)	<u>×_</u>	matter.					Ė		
-					0.30	<u>×</u> ×	Light ora	naish h	rown slightly	rravelly sar	idy CLAY. Occasio	nal		
- - -							rootlets.	Pocket	s of clayey sa	nd.	dy OLAT. Occasio	-		
- - - 0.60					(0.50)							-		
0.60	B D											-		
- -					0.80	××××× ×××××	× Laminat	ed dark	grey FLAGS1	ONE. Wea	thered.			
- 						× × × × × × × × × × × × × × × × × × ×	×					-		
- 1.00 -	ES				1.05	××××	×		End of Tr	ial Pit at 1.05r	1			
- -												-		
-												Ę		
- -												-		
- - -												Ī		
- -												Ė		
- -												-		
- - 												- 2		
-												- 2		
- - -												Ė		
- -												-		
- -												Ė		
-												-		
= = -												Ė		
-												-		
- - -												٤		
 - -												- 3		
- - -												Ė		
- -												-		
- - -												-		
- -												-		
- - -												ŀ		
				7										
Dimension	s:				I	I	Gener	al Rei	marks:				I	1
Final Depth:	1.05m								er encountered	I.				
		_	Longth (m)											
		•	— Length (m) 2.20m											
														
ب ا	_													
Width (m)	0.80m		Orientation: °											
- Wic			-											
							Strike	(m)	Casing (m)	Sealed (m	/ater Strikes) Time (mins)	Rose to (m)	Remark	s
₩														
							LIDO! TO	Tom=!=*	Joons Newstern	locus Dat	05/04/2022			
Inclination:	90°						HBSI TP 1	emplate	Issue Number: 6	issue Date:	UU/U4/ZUZ3			



			Contract Name:				lc	Client:				Trial Pi	t ID:	
Rigifa, Thurso							Ollerit.		Curtins		IIIai Fi			
	e	rs	Contract Number		e Started:		Logged By:		Checked E	By:	Status:		TP18	8
19			1003-015 Easting:		27/02/20 thing:		SO Ground Leve		Plant Used	1.	DRAFT Date Produced:	Sheet Scale:	of 1	
Trial Pit Log					interaming.			5T Tracked Excavator 04/03/2024				1:25		
Weather: Sur	nny with sh	owers		Hole	e Terminatio	n: Termin	ated on rock	r boulde	r obstruction	Stability: s	table	•		
Sa	mples &	In Situ T	estina					Strata	Details				-	
Depths	Sample ID				Depth (m) (Thickness)	Legend	Strata Description					Water	Backfill	
				Level	(×	Dark brow		organic sligh	tly sandy C	LAY. Peaty. Frequ	ient -		
0.20	ES				(0.35)	×	× organio n	iditor.				Ę		
<u>-</u> -					0.35	×	× Light brox	vnieh ar	ev slightly gr	avelly sand	y CLAY, with low			
- - -							cobble co	ntent. G	ravel is and	ular to suba	ngular fine to coa subrounded of	rse		
- - -							flagstone	ic. Cob	bies are sub	urigular to s	abrounded or	Ī		
- -							•					-		
-					(0.95)		• .					-		
- - 1.00 - 1.00	B D						0					- 1		
1.00	ES								,			-		
- -					1.30		*		End of Tr	ial Pit at 1.30n	1			
- -												-		
- - -												F		
-												Ī		
- - -												-		
- -												- 2		
- -												[
- - -												ļ		
-												Ė		
-												-		
- - -												<u>-</u>		
-												ļ		
- - —												- 3		
- - -												- 3		
- - -							>					-		
- -												ţ		
- -												-		
- -												ļ		
· -														
							Genera			ا التاما ماسمة	t 0 C0			
Final Depth:	1.30m						ino groui	idwater	encountered	ı. Field drai	n at u.oum.			
		◄	— Length (m)		▶									
			2.90m											
Ī														
<u>-</u>														
Width (m)	0.80m		Orientation: °											
- Wic	0			_										
							Strike	m) (Casing (m)	Sealed (m	ater Strikes Time (mins)	Rose to (m)	Remark	(S
¥														
Inolie etis :	00°						HBSI TP Te	mplate	Issue Number: 6	Issue Date:	05/04/2023			
Inclination:	an						1							

			Contract Name:				Clie	ent:		Curtins		Trial Pi	ID:	
			Rigifa, Thurso Contract Number	r: Date	e Started:		Logged By:		Checked E		Status:		TP20)
		15	1003-015		28/02/20		SO		Oneoked L	,y.	DRAFT			
1			Easting:		thing:		Ground Level:		Plant Used	l:	Date Produced:	Sheet '	of 1	
Tria	l Pit Lo	og	g.		9-				5T Tracked		04/03/2024		1:25	
Weather: Sun				Hole	Termination	on: Termir	nated on rock or l	bould	er obstruction	Stability: st	table			
				I										
	mples &	In Situ T	esting		T =	1	St	trata	Details				Water	Backfill
Depths	Sample ID	Те	st Result	Reduced Level	Depth (m) (Thickness)	Legen				Description			>	V///XV///X
-					(0.00)	×	organic mat	orga tter.	anic slightly sa	andy CLAY.	Peaty. Frequent	-		
0.20	ES				(0.30)	×	<u>-</u> ×					Ē		
- -					0.30	×	Light orang	ish bı	rown slightly	gravelly san	dy CLAY. Occasi	onal		
- - - 0.50	ES						rootlets. Po	ckets	of clayey sa	nd.		Ė		
- -							합 집					-		
- -							1 1					-		
-					(1.10)		1 1					-		
- -	_				(,		1 1					ļ.,		
- 1.00 1.00	B D						1 1					- 1		
-							일 교					-		
-							븝					-		
- - -					1.40	××××× ×××××	Laminated	dark	grey FLAGST	ONE. Weat	thered.			
- -					4.00	X X X X X X X X X X X X X X X X X X X	×					-		
-					1.60				End of Tr	ial Pit at 1.60n	1			277787778
-												-		
-												-		
- - -												- 2		
-												-		
- -												-		
-												[
- -												-		
- -												Ė		
- -												-		
- -												-		
- - -												- 3		
- -												3		
- -							>					-		
												[
- -												-		
- -												Ē		
-												-		
-												-		
							1							
Dimension							General							
Final Depth:	1.60m						No ground	wate	r encountered	I.				
		4	— Length (m)		>									
		•	2.40m											
A														
Width (m)	0.80m		Orientation: °	•										
Widt	0		◀											
							Ctriles /	\ T	Casing (m)		ater Strikes	Pose to (~)	Demari-	
 							Strike (m	1	Casing (m)	Sealed (m)) Time (mins)	Rose to (m)	Remark	•
•														
Inclination:	90°						HBSI TP Temp	olate	Issue Number: 6	Issue Date:	05/04/2023		•	



			Contract Name:				lc	lient:				Trial Pit	ID:	
			Rigifa, Thurso							Curtins				
		rc	Contract Number	r: Date	e Started:	I	ogged By:		Checked B	y:	Status:		TP23	3
			1003-015		29/02/20	024	SO				DRAFT	Sheet 1	of 1	
Tria	ıl Pit Lo	oa	Easting:	Nort	thing:		Ground Leve	el:	Plant Used 5T Tracked		Date Produced: 04/03/2024	Scale:	1:25	
Weather: Sun		J	1	Hole	Termination	on: Termin	ated on rock o	r boulde	r obstruction	Stability: s				
Sai	mples &	In Situ T	esting					Strata	Details				Water	Backfill
Depths	Sample ID	Те	est Result	Reduced Level	Depth (m) (Thickness)	Legend			Strata	Description	1		₩	Васкііі
					, ,	×	Dark brow	n very	organic sligh	tly sandy C	LAY. Peaty. Frequ	uent _		
0.20	ES				(0.30)	×	organic m	atter.				[
0.20					0.30	X X						-		
					0.00		Light oran	ıgish gr ntent (ey slightly gra Gravel is angi	avelly sand ular to suba	y CLAY, with low angular fine to coa	ırse -		
0.50	ES						of flagstor	ne. Cob	bles are suba	angular to s	subrounded of	-		
							ilagstone.	Pocke	ts of clayey s	and.				
					(0.80)		1							
							*							
							•							
_							9					- 1		
					1.10	××××	× Laminate	d dark d	rey FLAGST	ONE. Wea	thered.	[
1.20	В					× × × × × × × × × × × × × × × × × × ×	×		, -,			-		
1.20	D				1.30	22222			End of Tri	al Pit at 1.30r	n	 		
-														
-												- 2		
												F		
												F		
												[
												Ł l		
												<u> </u>		
-												-3		
												[]		
-												<u> </u>		
												<u> </u>		
												ţ		
Dimension							Genera							
Final Depth:	1.30m						No grour	dwater	encountered	l.				
		◄	Length (m)		▶									
			2.60m											
														
Width (m)	E O		Orientation: 5	,										
/idth	0.90m		◄											
≶							<u> </u>			14	/ater Strikes			
							Strike (m)	Casing (m)	Sealed (m		Rose to (m)	Remark	S
▼									T					
Inclination:	90°						HBSI TP Te	mplate	Issue Number: 6	Issue Date:	05/04/2023			

			Contract Name:					Client:				Trial Pit	ID:	
			Rigifa, Thurso	ls (0, , ,				To	Curtins	0.1		TP24	1
	er	75	Contract Number 1003-015		e Started: 29/02/20		ogged By:		Checked E	y:	Status: DRAFT			•
17,			Easting:		:hing:		Ground Lev		Plant Used		Date Produced:	Sheet 1 Scale:	of 1	
Tria	ıl Pit Log				9.				5T Tracked		04/03/2024		1:25	
Weather: Sun	ın	_		Hole	Termination	n: Termina	ited on rock	or boulder	obstruction	Stability: s	table			
Sai	mples & I	n Situ T	estina	·				Strata	Details				_	
Depths	Sample ID		st Result	Reduced Level	Depth (m) (Thickness)	Legend		Otrata		Description	<u> </u>		Water	Backfill
				Level	(THICKHESS)	×_^_×					Peaty. Frequent	-		XXXX
0.20	ES					××	organic	matter.				ŧ l		
0.20					0.25	×	Light ora	angish bro	wn slightly (gravelly sar	ndy CLAY. Occasional	+		
					(0.35)		rootlets.	Pockets	of clayey sai	nd.				
0.50	ES											-		
0.70	В				0.60	×××××× ××××××	Laminat	ed dark g	rey FLAGST	ONE. Wea	thered.			
0.70	D				0.80	××××××			Cod of To	ial Pit at 0.80r		_		
									Endoili	iai Pit at 0.00i	!!			
_												- 1		
												-		
												-		
												-		
· -												-		
												-		
												Ė		
												-		
												- 2		
												-		
-												-		
												-		
-												- 3		
												-		
												-		
· ·														
												-		
												[
Dimension	s:				<u> </u>	1	Gener	ral Rem	arks [.]					1
Final Depth:									encountered	l.				
,														
	•	←	— Length (m) 2.30m		▶									
A			2.30[[]											
Ī														
h (m)	0.70m		Orientation: °											
Width (m)	0.7		◀											
- 1							2: "	· /> 1 -	Si- / S T		/ater Strikes	4- ()	D- 1	
ļ							Strike	e (m) (Casing (m)	Sealed (m) Time (mins) Ros	se to (m)	Remark	5
•														
Inclination:	90°						HBSI TP	Template I	ssue Number: 6	Issue Date:	05/04/2023			
omiauott.														

			Contract Name:				C	Client:				Trial	Pit ID:	
			Rigifa, Thurso							Curtins				25
		rc	Contract Number		Started:		ogged By:		Checked E	Зу:	Status:		TP2	25
17	C		1003-015		29/02/20		SO				DRAFT		t 1 of 1	
Tria	ıl Pit Lo	a	Easting:	Nort	hing:		Ground Leve	el:	Plant Used	d: d Excavator	Date Produced: 04/03/2024	Scale	e: 1:2	5
Weather: Sun		9		Hole	Termination	on: Termina	ated on rock of	or bould	er obstruction	Stability: s				
Sai	mples &	In Situ T	esting			1		Strata	Details				Water	Backfill
Depths	Sample ID	Те	st Result	Reduced Level	Depth (m) (Thickness)	Legend				Description			Š	
					(0.30)	××	organic m		organic sligr	itly sandy C	CLAY. Peaty. Frequency	uent .		
0.20	ES				' '	×—×						[
					0.30		Light orar	ngish bi	rown sandy C	CLAY. Occa	sional rootlets.			
-												-		
												-		
					(0.75)							Ę		
0.90	В											-		
0.90	D											[- 1		
1.00	ES				1.05		Dark brov	vnish g	rey slightly gr	ravelly sand	ly CLAY, with low			
					1.20	××××××	of flagsto	ne. Col	obles are sub	angular to	angular fine to coa subrounded of	SC [
					1.30	×××××	flagstone Laminate	d dark	grey FLAGS	ΓΟΝΕ. Wea	thered.	<u>/</u> ŧ		774///74/
· · =									End of Ti	rial Pit at 1.30	n	[
												-		
												[
												-		
-												[- 2		
												-		
												Ī		
												-		
· ·												E		
												-		
												Ē		
												-		
- -												[- 3		
												Ę		
												-		
· ·												ļ.		
												-		
												-		
Dimension:	s:				I	1	Genera	al Ren	narks:					
Final Depth:									r encountered	d.				
		◀	— Length (m) 2.60m		▶									
•			2.00111											
Width (m)	0.80m		Orientation: ³											
Wid	0		◀				L							
							Strike	(m)	Casing (m)	Sealed (m	/ater Strikes) Time (mins)	Rose to (n	n) Rema	rks
↓ ▼									/	,	` ′			
Inclination:	90°						HBSI TP Te	mplate	Issue Number: 6	Issue Date:	05/04/2023			

			Contract Name:				C	ient:		- · ·		Trial P	it ID:	
			Rigifa, Thurso Contract Number	: Dat	e Started:	Ιι	ogged By:		Checked B	Curtins	Status:		TP2	7
	e	5	1003-015		28/02/20		SO		OTTO SKOU Z	.,.	DRAFT	Sheet	1 of 1	
Tria	al Pit Lo	g	Easting:	Nor	thing:	C	Ground Leve	:	Plant Used		Date Produced: 04/03/2024	Scale:		i
Weather: Sur	ny with sho	wers		Hole	Termination	on: Termina	ated on rock or	boulder	obstruction	Stability: s	table	,		
Sa	mples & I	In Situ T	estina					Strata [Details				_	
Depths	Sample ID		st Result	Reduced Level	Depth (m) (Thickness)	Legend	1	- Iraia I		Description			Water	Backfill
				20101	(11110111000)	×	Dark brow	n organi	ic slightly sa	andy CLAY.	Peaty. Frequent	-		
- 0.20	ES				0.05	××	-					-		
- - -					0.25		Light orang	gish bro	wn slightly (of clayey sai	gravelly sar nd.	ndy CLAY. Occasi	onal		
- - - 0.50	ES				(0.55)				, ,			Ė		
-					(0.55)		-					-		
- - -							1					[
-					0.80	××××× ×××××	Laminated	dark gr	ey FLAGST	ONE. Wea	thered.			
- - 1.00	В				(0.30)	× × × × × × × × × × × × × × × × × × ×	×					- 1		
1.00	D				1.10	× × × × ×	×		End of Tr	ial Pit at 1.10r	n			
- -												ŧ		
- -												-		
- - -												Ė		
-												-		
-												-		
- - -												-		
_ -												- 2		
-												ļ		
-												-		
												Ē		
-												-		
-												-		
-												Ē		
-														
-												- 3		
- -												Ė		
-												-		
- - -												-		
-												-		
												[
Dimension	s:						Genera	l Rema	arks:					
Final Depth:									encountered	l.				
		_												
	•	•	— Length (m)		▶									
														
- (u														
Width (m)	0.80m		Orientation: °											
Wic	0			_										
							Strike (r	n) C	asing (m)	W Sealed (m	/ater Strikes) Time (mins)	Rose to (m)	Remar	KS
							,							
Inclination:	90°						HBSI TP Ten	nplate Is	sue Number: 6	Issue Date:	05/04/2023			

			Contract Name: Rigifa, Thurso					Client:		Curtins		Trial F	Pit ID:	
			Contract Number	· Date	Started:		Logged By:		Checked E		Status:		TP28	3
		15	1003-015		29/02/20		S(Oncored E	, , , , , , , , , , , , , , , , , , ,	DRAFT			
			Easting:		hing:		Ground Lev		Plant Used	d:	Date Produced:	Sneet	1 of 1	
Tria	al Pit Lo		3		J				I	l Excavator	04/03/2024		1:25	
Weather: Sur				Hole	Termination	on: Termir	ated on rock	or bould	der obstruction	Stability: st	able	<u> </u>		
	 	In Situ Te			I =			Strata	a Details				Water	Backfill
Depths	Sample ID	Tes	st Result	Reduced Level	Depth (m) (Thickness)	Legend				Description	Danti Francisco		3	V///SV///S
-					(0.30)	×	organic		anic slightly sa	andy CLAY.	Peaty. Frequent	-		
0.20	ES					×	<u>×</u>					[
- -					0.30	<u>×</u>	Light ora	angish g	grey slightly gr	avelly sand	/ CLAY, with low			
- - - 0.50	ES						of flagst	one. Co	bbles are sub	angular to s	ngular fine to coa ubrounded of	rse		
- 0.60	В				(0.50)		flagston	e. Pock	ets of clayey s	and.		-		
0.60	D											-		
-					0.80		Dark bro	wnish o	grey slightly gr	avelly sand	y CLAY, with low	[
-							🗓 cobble c	content.	Gravel is and	ular to suba	ngular fine to coa ubrounded of	+		
- -					(0.00)		flagston		ibbles are sub	angulai to s	abioanaea oi	- 1		
-					(0.60)		3					[
- -							=					-		
-					1.40	××××	⊡ 3 Laminat	ed dark	grey FLAGS1	ONF Weat	hered			
- = -					(0.30)	×××××	×		g. c,	0.12. 7754		[-		
-					` ′	****	*					-		
- - -					1.70		1		End of Tr	ial Pit at 1.70m	1			07740774
- -												-		
- 												- 2		
-												-		
- -												-		
-												Ē		
-												-		
-												-		
- -												[
- -												-		
- - _												- 3		
- -												3		
-							>					-		
- -												E		
- -												-		
- -												Ė		
-												-		
-														
					<i>Y</i>		1,							
Dimension									marks:					
Final Depth:	1.70m						No grou	undwate	er encountered	d.				
		4 ——	Length (m)		▶									
		`	2.50m		•									
														
- -														
Width (m)	0.90m		Orientation: °											
Wic	0													
							Strike	e (m)	Casing (m)	Sealed (m)	ater Strikes Time (mins)	Rose to (m) Remarks	s
↓ ▼							34	` '/	- ···g (···/	(111)	()			
Inclination:	90°						HBSI TP	Template	Issue Number: 6	Issue Date:	05/04/2023			

Appendix C – Laboratory Testing Results

Certificate of Analysis

Issued:

13-Mar-24

Certificate Number 24-04820

Client Curtins Consulting

29 St Vincent Place

Glasgow G1 2DT

Our Reference 24-04820

Client Reference ~ (not supplied)

Order No ~ (not supplied)

Contract Title ~ Rigfa

Description 22 Soil samples.

Date Received 07-Mar-24

Date Started 07-Mar-24

Date Completed 13-Mar-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

2308616

Summary of Chemical Analysis Soil Samples

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

								l .	
		San	nple ID ~	TP01	TP01	TP02	TP03	TP04	TP05
			Depth ~	0.20	0.50	0.50	0.50	0.50	1.00
		0	ther ID ~						
		Sampl	e Type ~	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Samplin	g Date ~	27/02/2024	27/02/2024	27/02/2024	27/02/2024	28/02/2024	27/02/2024
		Samplin	g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	16		8.5	7.4	5.5	5.7
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.6		< 0.2	< 0.2	< 0.2	0.2
Cadmium	DETSC 2301#	0.1	mg/kg	0.1		< 0.1	< 0.1	< 0.1	0.1
Chromium	DETSC 2301#	0.15	mg/kg	17		21	25	22	23
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	9.4		13	14	10	20
Lead	DETSC 2301#	0.3	mg/kg	14		9.6	10	9.1	11
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l		< 10				
Mercury	DETSC 2325#	0.05	mg/kg	0.06		< 0.05	< 0.05	< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	8.9		20	13	18	23
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	35		38	29	33	50
Inorganics									
pH	DETSC 2008#		рН	5.9	6.3	6.3	6.2	5.4	5.8

Lab No 2308613 2308614 2308615

Nickel	DETSC 2301#	1	mg/kg	8.9		20	13	18	23
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	35		38	29	33	50
Inorganics									
pH	DETSC 2008#		рН	5.9	6.3	6.3	6.2	5.4	5.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.6		0.1	< 0.1	0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	5.6		0.5	0.2	1.0	0.2
Ammonia Aqueous Extract as N	DETSC 2119*	10	mg/l		< 10				
Chloride Aqueous Extract (2:1)	DETSC 2055	1	mg/l		7.1				
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l		< 1.0				
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	25	18	< 10	12	< 10	35
Sulphur as S, Total	DETSC 2320	0.01	%		0.01				
Sulphate as SO4, Total	DETSC 2321#	0.01	%		0.03				
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5	< 1.5	< 1.5
Alinhatic C12-C16	DETSC 3072#	1 2	mg/kg	< 1 2		< 1 2	< 1 2	< 1 2	<12

Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9	< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6	< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10	< 10
PAHs								
Naphthalenample details provided by o	client 1016TS:0 0 38701t th	e vali 0 it 1 /0	oft heg∉kø tt	s: * -n ot Ocd ro	edited.: # -MCERTS (accred	itation only a	plies if⊲r epo rt	< 0.1

carries the MCERTS logo).

: n/s -not Page 2 of 14

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

		Lab No	2308613	2308614	2308615	2308616	2308617	2308618
	San			TP01	TP02	TP03	TP04	TP05
		-	0.20	0.50	0.50	0.50	0.50	1.00
	_							
						SOIL		
	-	_						
			n/s	n/s	n/s	n/s	n/s	n/s
	1							
					_	_		< 0.1
	_				_			< 0.1
DETSC 3301					< 0.1			< 0.1
DETSC 3301	0.1				< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg			< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	0.2		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	0.1	mg/kg	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1
DETSC 3301	1.6	mg/kg	< 1.7		< 1.6	< 1.6	< 1.6	< 1.6
				•	•			
DETSC 2130#	0.3	mg/kg	1.2		< 0.3	< 0.3	< 0.3	< 0.3
	DETSC 3301	Nethod LOD	Sample ID ~ Depth ~ Other ID ~ Sample Type ~ Sampling Date ~ Sampling Time ~ Method LOD Units DETSC 3301 0.1 mg/kg DETSC 3301 0.1 mg/kg	Sample ID ~ Depth ~ 0.20	Sample ID ~ Depth ~ 0.20 0.50	Sample ID ~ Depth ~ 0.20 0.50 0.50 0.50	Sample ID ~ Depth ~ O.20 O.50 O.50 O.50 O.50	Sample ID ~ Depth ~ 0.20 0.50

: n/s -not Page 3 of 14

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

carries the MCERTS logo).

Lab No	2308619	2308620	2308621	2308622	2308623	2308624
Sample ID ~	TP06	TP07	TP08	TP09	TP10	TP12
Depth ~	0.50	0.10	1.00	0.50	1.00	0.50
Other ID ~						
Sample Type ~	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date ~	27/02/2024	27/02/2024	29/02/2024	27/02/2024	27/02/2024	29/02/2024
Sampling Time ~	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg		1.6	17	6.0		2.8
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg		0.4	< 0.2	< 0.2		< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg		< 0.1	0.1	0.2		< 0.1
Chromium	DETSC 2301#	0.15	mg/kg		6.5	58	16		25
Chromium, Hexavalent	DETSC 2204*	1	mg/kg		< 1.0	< 1.0	< 1.0		< 1.0
Copper	DETSC 2301#	0.2	mg/kg		4.1	36	15		8.9
Lead	DETSC 2301#	0.3	mg/kg		6.2	13	13		10
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l	< 10				< 10	
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05	< 0.05	0.08		< 0.05
Nickel	DETSC 2301#	1	mg/kg		4.2	63	15		27
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5	< 0.5	< 0.5		< 0.5
Zinc	DETSC 2301#	1	mg/kg		18	83	44		120
Inorganics									
pH	DETSC 2008#		рН	6.8	5.6	7.3	5.2	5.7	6.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg		0.6	< 0.1	0.1		0.1
Organic matter	DETSC 2002#	0.1	%		8.7	0.8	1.0		0.6
Ammonia Aqueous Extract as N	DETSC 2119*	10	mg/l	< 10				< 10	
Chloride Aqueous Extract (2:1)	DETSC 2055	1	mg/l	4.7				6.0	
	DETSC 2055	1	mg/l	1.9				< 1.0	
Sulphate Aqueous Extract as SO4 (2:1)		10	mg/l	11	23	37	23	10	16
Sulphur as S, Total	DETSC 2320	0.01	%	0.01				0.01	
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.02				0.02	
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg		< 1.5	< 1.5	< 1.5		< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg		< 1.2	< 1.2	< 1.2		< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg		< 1.5	< 1.5	< 1.5		< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg		< 3.4	< 3.4	< 3.4		< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg		< 10	< 10	< 10		< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01		< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg		< 0.9	< 0.9	< 0.9		< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg		< 0.5	< 0.5	< 0.5		< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg		< 0.6	< 0.6	< 0.6		< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg		< 1.4	< 1.4	< 1.4		< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg		< 10	< 10	< 10		< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg		< 10	< 10	< 10		< 10
PAHs			•			•	•	•	
Naphtheylersemple details provided by client	DETSO 3801t th	e vali 0 i ±1	oft heg∉k⊯	s: * -not accr	edited. ≲# G M C	ERTS (accredit	ation or 0y app	lies if report	< 0.1
carries the MCERTS legal							-		

: n/s -not Page 4 of 14

Our Ref 24-04820

Client Ref ~									
Contract Title ~ Rigfa									
			Lab No	2308619	2308620	2308621	2308622	2308623	2308624
		San	nple ID ~	TP06	TP07	TP08	TP09	TP10	TP12
			Depth ~	0.50	0.10	1.00	0.50	1.00	0.50
			ther ID ~						
			le Type ~		SOIL	SOIL	SOIL	SOIL	SOIL
				27/02/2024					
Total	8.6 - 4.51		g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units		.0.4	. 0. 4	. 0. 4	<u> </u>	.0.4
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Fluorene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Pyrene	DETSC 3301	0.1	mg/kg		0.3	< 0.1	0.1		< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Chrysene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	< 0.1		< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.7	< 1.6	< 1.7		< 1.6
Phenols					_				
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg		2.3	< 0.3	< 0.3		< 0.3

Page 5 of 14 : n/s -not

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

carries the MCERTS logo).

Lab No	2308625	2308626	2308627	2308628	2308629	2308630
Sample ID ~	TP14	TP15	TP19	TP20	TP21	TP23
Depth ~	0.20	0.50	0.50	0.50	0.50	0.20
Other ID ~						
Sample Type ~	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Sampling Date ~	28/02/2024	28/02/2024	27/02/2024	28/02/2024	29/02/2024	29/02/2024
Sampling Time ~	n/s	n/s	n/s	n/s	n/s	n/s
LOD Units						

		Sampiin	8 mile	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	1.3	3.9	20		4.1	12
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.4	0.2	< 0.2		< 0.2	0.4
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	5.8	19	18		22	39
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	3.6	16	5.7		16	11
Lead	DETSC 2301#	0.3	mg/kg	4.8	8.4	8.6		9.9	12
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l				< 10		
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	< 0.05	< 0.05		< 0.05	< 0.05
Nickel	DETSC 2301#	1	mg/kg	2.5	12	12		14	22
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	14	32	23		39	60
Inorganics									
рН	DETSC 2008#		рН	5.8	5.3	6.9	5.4	5.3	6.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.5	< 0.1	3.7		0.1	0.5
Organic matter	DETSC 2002#	0.1	%	8.6	0.5	0.4		0.5	4.5
Ammonia Aqueous Extract as N	DETSC 2119*	10	mg/l				< 10		
Chloride Aqueous Extract (2:1)	DETSC 2055	1	mg/l				5.7		
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l				4.0		
Sulphate Aqueous Extract as SO4 (2:1)		10	mg/l	17	< 10	12	11	< 10	20
Sulphur as S, Total	DETSC 2320	0.01	%				< 0.01		
Sulphate as SO4, Total	DETSC 2321#	0.01	%				0.02		
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	< 1.2	< 1.2		< 1.2	< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	< 1.5	< 1.5		< 1.5	< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4	< 3.4		< 3.4	< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	< 10	< 10		< 10	< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01		< 0.01	< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	< 0.9	< 0.9		< 0.9	< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5	< 0.5	< 0.5		< 0.5	< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6	< 0.6	< 0.6		< 0.6	< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4		< 1.4	< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 1.4	< 1.4	< 10		< 10	< 10
TPH Ali/Aro Total C5-C35		10							
-	DETSC 3072*	10	mg/kg	< 10	< 10	< 10		< 10	< 10
PAHs		1101.1	/ı .l		II. IO. 4			11 16 0 1	
Naphtheriersemple details provided by client	andican about th	ie vali ti ji t	of t negreng	s: ↑-n o tblodre	edited.≲#UMC	ERTS (accredi	tation only ap	piies it≺r epā rt	< 0.1

: n/s -not Page 6 of 14

Our Ref 24-04820

Client Ref ~									
Contract Title ~ Rigfa									
			Lab No	2308625	2308626	2308627	2308628	2308629	2308630
		San	nple ID ~	TP14	TP15	TP19	TP20	TP21	TP23
			Depth ~	0.20	0.50	0.50	0.50	0.50	0.20
			ther ID ~						
			le Type ~		SOIL	SOIL	SOIL	SOIL	SOIL
			g Date ~			27/02/2024		29/02/2024	
			g Time ~	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				1		
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1		< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1		< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg		0.1	0.2		< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1		< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1		< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1		< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	0.3	< 0.1	< 0.1		< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1		< 0.1	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	< 1.7	< 1.6	< 1.7		< 1.6	< 1.6
Phenols									
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	1.1	< 0.3	0.5		0.4	0.7

Page 7 of 14 : n/s -not

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

Lab No	2308631	2308632	2308633	2308634
Sample ID ~	TP23	TP24	TP26	TP27
Depth ~	0.50	0.50	0.50	0.50
Other ID ~				
Sample Type ~	SOIL	SOIL	SOIL	SOIL
Sampling Date ~	29/02/2024	29/02/2024	27/02/2024	28/02/2024
Sampling Time ~	n/s	n/s	n/s	n/s

		Janipiin	giiiie	11/5	11/5	11/5	11/5
Test	Method	LOD	Units	•		·	
Metals							
Arsenic	DETSC 2301#	0.2	mg/kg		2.8		4.8
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg		< 0.2		< 0.2
Cadmium	DETSC 2301#	0.1	mg/kg		< 0.1		< 0.1
Chromium	DETSC 2301#	0.15	mg/kg		9.4		21
Chromium, Hexavalent	DETSC 2204*	1	mg/kg		< 1.0		< 1.0
Copper	DETSC 2301#	0.2	mg/kg		2.3		16
Lead	DETSC 2301#	0.3	mg/kg		7.3		10
Magnesium Aqueous Extract (2:1)	DETSC 2076*	10	mg/l	< 10		< 10	
Mercury	DETSC 2325#	0.05	mg/kg		< 0.05		< 0.05
Nickel	DETSC 2301#	1	mg/kg		2.7		11
Selenium	DETSC 2301#	0.5	mg/kg		< 0.5		< 0.5
Zinc	DETSC 2301#	1	mg/kg		15		25
Inorganics							
pH	DETSC 2008#		рН	6.0	5.7	4.8	5.0
Cyanide, Total	DETSC 2130#	0.1	mg/kg		0.2		< 0.1
Organic matter	DETSC 2002#	0.1	%		1.3		0.5
Ammonia Aqueous Extract as N	DETSC 2119*	10	mg/l	< 10		< 10	
Chloride Aqueous Extract (2:1)	DETSC 2055	1	mg/l	15		15	
Nitrate Aqueous Extract as NO3 (2:1)	DETSC 2055	1	mg/l	3.5		< 1.0	
Sulphate Aqueous Extract as SO4 (2:1)		10	mg/l	16	11	38	< 10
Sulphur as S, Total	DETSC 2320	0.01	%	0.04		0.01	
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.02		0.09	
Petroleum Hydrocarbons							
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg		< 1.5		< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg		< 1.2		< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg		< 1.5		< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg		< 3.4		< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg		< 10		< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg		< 0.01		< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg		< 0.9		< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg		< 0.5		< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg		< 0.6		< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg		< 1.4		< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg		< 10		< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg		< 10		< 10
PAHs	DE13C 3072	10	1116/118		` 10		10
I Ally	T.						

Naphtkeplersemple details provided by client DETS 1380 the validity of the selection of the

: n/s -not Page 8 of 14

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

Contract Title ~ Rigfa							
			Lab No	2308631	2308632	2308633	2308634
		San	nple ID ~	TP23	TP24	TP26	TP27
			Depth ~	0.50	0.50	0.50	0.50
			ther ID ~				
			e Type ~	SOIL	SOIL		SOIL
			_	29/02/2024		27/02/2024	
		_	g Time ~	n/s	n/s	n/s	n/s
Test	Method	LOD	Units			1	
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Fluorene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Anthracene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Pyrene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Chrysene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg		< 0.1		< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg		< 1.6		< 1.6
Phenols	·						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg		< 0.3		< 0.3

: n/s -not Page 9 of 14

Summary of Asbestos Analysis Soil Samples

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2308613	TP01 0.20	SOIL	NAD	none	Ben Barsby
2308615	TP02 0.50	SOIL	NAD	none	Ben Barsby
2308616	TP03 0.50	SOIL	NAD	none	Ben Barsby
2308617	TP04 0.50	SOIL	NAD	none	Ben Barsby
2308618	TP05 1.00	SOIL	NAD	none	Ben Barsby
2308620	TP07 0.10	SOIL	NAD	none	Ben Barsby
2308621	TP08 1.00	SOIL	NAD	none	Ben Barsby
2308622	TP09 0.50	SOIL	NAD	none	Ben Barsby
2308624	TP12 0.50	SOIL	NAD	none	Ben Barsby
2308625	TP14 0.20	SOIL	NAD	none	Ben Barsby
2308626	TP15 0.50	SOIL	NAD	none	Ben Barsby
2308627	TP19 0.50	SOIL	NAD	none	Ben Barsby
2308629	TP21 0.50	SOIL	NAD	none	Ben Barsby
2308630	TP23 0.20	SOIL	NAD	none	Ben Barsby
2308632	TP24 0.50	SOIL	NAD	none	Ben Barsby
2308634	TP27 0.50	SOIL	NAD	none	Ben Barsby

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

							Threshold			SOM SOM1/
Job	Lab No	Sample ID	Depth	Other ID	Test	Result	Upper	Lower	Threshold	Result SOM6
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS1 Playing Fields Attached to Schools end use	8.6672 SOM6
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS1 Playing Fields Attached to Schools end use	8.6464 SOM6
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS2 Playing Fields end use	8.6672 SOM6
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS2 Playing Fields end use	8.6464 SOM6
24-04820	2308620	TP07	0.10		Chromium	6.54	3.06	-9999	CURTINS3 Allotment end use	8.6672 SOM6
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS3 Allotment end use	8.6672 SOM6
24-04820	2308625	TP14	0.20		Chromium	5.78	3.06	-9999	CURTINS3 Allotment end use	8.6464 SOM6
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS3 Allotment end use	8.6464 SOM6
24-04820	2308613	TP01	0.20		рН	5.85	8	6	CURTINS4 Residential without Home Grown Produce end	5.6492 SOM1
24-04820	2308617	TP04	0.50		рН	5.44	8	6	CURTINS4 Residential without Home Grown Produce end	1.047 SOM1
24-04820	2308618	TP05	1.00		рН	5.79	8	6	CURTINS4 Residential without Home Grown Produce end	0.1577 SOM1
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS4 Residential without Home Grown Produce end	8.6672 SOM6
24-04820	2308622	TP09	0.50		рН	5.17	8	6	CURTINS4 Residential without Home Grown Produce end	1.0346 SOM1
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS4 Residential without Home Grown Produce end	8.6464 SOM6
24-04820	2308626	TP15	0.50		рН	5.27	8	6	CURTINS4 Residential without Home Grown Produce end	0.4875 SOM1
24-04820	2308629	TP21	0.50		рН	5.26	8	6	CURTINS4 Residential without Home Grown Produce end	0.5262 SOM1
24-04820	2308632	TP24	0.50		рН	5.69	8	6	CURTINS4 Residential without Home Grown Produce end	1.2968 SOM1
24-04820	2308634	TP27	0.50		рН	5	8	6	CURTINS4 Residential without Home Grown Produce end	0.5012 SOM1
24-04820	2308613	TP01	0.20		рН	5.85	8	6	CURTINS5 Open Space end use	5.6492 SOM1
24-04820	2308617	TP04	0.50		рН	5.44	8	6	CURTINS5 Open Space end use	1.047 SOM1
24-04820	2308618	TP05	1.00		рН	5.79	8	6	CURTINS5 Open Space end use	0.1577 SOM1
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS5 Open Space end use	8.6672 SOM6
24-04820	2308622	TP09	0.50		рН	5.17	8	6	CURTINS5 Open Space end use	1.0346 SOM1
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS5 Open Space end use	8.6464 SOM6
24-04820	2308626	TP15	0.50		рН	5.27	8	6	CURTINS5 Open Space end use	0.4875 SOM1
24-04820	2308629	TP21	0.50		рН	5.26	8	6	CURTINS5 Open Space end use	0.5262 SOM1
24-04820	2308632	TP24	0.50		рН	5.69	8	6	CURTINS5 Open Space end use	1.2968 SOM1

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

							Threshold			SOM SOM1/
Job	Lab No	Sample ID	Depth	Other ID	Test	Result	Upper	Lower	Threshold	Result SOM6
24-04820	2308634	TP27	0.50		рН	5	8	6	CURTINS5 Open Space end use	0.5012 SOM1
24-04820	2308613	TP01	0.20		рН	5.85	8	6	CURTINS6 Parks end use	5.6492 SOM1
24-04820	2308617	TP04	0.50		рН	5.44	8	6	CURTINS6 Parks end use	1.047 SOM1
24-04820	2308618	TP05	1.00		рН	5.79	8	6	CURTINS6 Parks end use	0.1577 SOM1
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS6 Parks end use	8.6672 SOM6
24-04820	2308622	TP09	0.50		рН	5.17	8	6	CURTINS6 Parks end use	1.0346 SOM1
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS6 Parks end use	8.6464 SOM6
24-04820	2308626	TP15	0.50		рН	5.27	8	6	CURTINS6 Parks end use	0.4875 SOM1
24-04820	2308629	TP21	0.50		рН	5.26	8	6	CURTINS6 Parks end use	0.5262 SOM1
24-04820	2308632	TP24	0.50		рН	5.69	8	6	CURTINS6 Parks end use	1.2968 SOM1
24-04820	2308634	TP27	0.50		рН	5	8	6	CURTINS6 Parks end use	0.5012 SOM1
24-04820	2308613	TP01	0.20		рН	5.85	8	6	CURTINS7 Commercial end use	5.6492 SOM1
24-04820	2308617	TP04	0.50		рН	5.44	8	6	CURTINS7 Commercial end use	1.047 SOM1
24-04820	2308618	TP05	1.00		рН	5.79	8	6	CURTINS7 Commercial end use	0.1577 SOM1
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS7 Commercial end use	8.6672 SOM6
24-04820	2308622	TP09	0.50		рН	5.17	8	6	CURTINS7 Commercial end use	1.0346 SOM1
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS7 Commercial end use	8.6464 SOM6
24-04820	2308626	TP15	0.50		рН	5.27	8	6	CURTINS7 Commercial end use	0.4875 SOM1
24-04820	2308629	TP21	0.50		рН	5.26	8	6	CURTINS7 Commercial end use	0.5262 SOM1
24-04820	2308632	TP24	0.50		рН	5.69	8	6	CURTINS7 Commercial end use	1.2968 SOM1
24-04820	2308634	TP27	0.50		рН	5	8	6	CURTINS7 Commercial end use	0.5012 SOM1
24-04820	2308613	TP01	0.20		рН	5.85	8	6	CURTINS8 Residential with consumption of Produce end ι	5.6492 SOM1
24-04820	2308617	TP04	0.50		рН	5.44	8	6	CURTINS8 Residential with consumption of Produce end ι	1.047 SOM1
24-04820	2308618	TP05	1.00		рН	5.79	8	6	CURTINS8 Residential with consumption of Produce end ι	0.1577 SOM1
24-04820	2308620	TP07	0.10		рН	5.6	8	6	CURTINS8 Residential with consumption of Produce end ι	8.6672 SOM6
24-04820	2308622	TP09	0.50		рН	5.17	8	6	CURTINS8 Residential with consumption of Produce end ι	1.0346 SOM1
24-04820	2308625	TP14	0.20		рН	5.79	8	6	CURTINS8 Residential with consumption of Produce end ι	8.6464 SOM6

Our Ref 24-04820 Client Ref ~ Contract Title ~ Rigfa

							Threshold			SOM	SOM1/
Job	Lab No	Sample ID	Depth	Other ID	Test	Result	Upper	Lower	Threshold	Result	SOM6
24-04820	2308626	TP15	0.50		рН	5.27	8	6	CURTINS8 Residential with consumption of Produce end ι	0.4875	SOM1
24-04820	2308629	TP21	0.50		рН	5.26	8	6	CURTINS8 Residential with consumption of Produce end ι	0.5262	SOM1
24-04820	2308632	TP24	0.50		рН	5.69	8	6	CURTINS8 Residential with consumption of Produce end $\boldsymbol{\iota}$	1.2968	SOM1
24-04820	2308634	TP27	0.50		рН	5	8	6	CURTINS8 Residential with consumption of Produce end $\boldsymbol{\iota}$	0.5012	SOM1

Information in Support of the Analytical Results

Our Ref 24-04820 Client Ref ~ Contract ~ Rigfa

Containers Received & Deviating Samples

Inappropriat

Date e container

Lab No	Sample ID ~	Sampled ~	Containers Received	Holding time exceeded for tests	for tests
2308613	TP01 0.20 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308614	TP01 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2308615	TP02 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308616	TP03 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308617	TP04 0.50 SOIL	28/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308618	TP05 1.00 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308619	TP06 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2308620	TP07 0.10 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308621	TP08 1.00 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L		
2308622	TP09 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308623	TP10 1.00 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2308624	TP12 0.50 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L		
2308625	TP14 0.20 SOIL	28/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308626	TP15 0.50 SOIL	28/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308627	TP19 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	
2308628	TP20 0.50 SOIL	28/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days), pH + Conductivity (7 days)	
2308629	TP21 0.50 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L		
2308630	TP23 0.20 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L		
2308631	TP23 0.50 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days)	
2308632	TP24 0.50 SOIL	29/02/24	GJ 250ml, GJ 60ml, PT 1L		
2308633	TP26 0.50 SOIL	27/02/24	GJ 250ml, GJ 60ml, PT 1L	Ammonia Aqueous Extract (3 days), Total Sulphur	
				ICP (7 days). pH + Conductivity (7 days)	
2308634	TP27 0.50 SOIL	28/02/24	GJ 250ml, GJ 60ml, PT 1L	pH + Conductivity (7 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

08-Apr-24

Certificate Number 24-06681

Client Curtins Consulting

29 St Vincent Place

Glasgow G1 2DT

Our Reference 24-06681

Client Reference ∼ (not supplied)

Order No ~ (not supplied)

Contract Title ~ RIGIFA

Description 2 Soil samples.

Date Received 02-Apr-24

Date Started 02-Apr-24

Date Completed 08-Apr-24

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

General Manager

Our Ref 24-06681 Client Ref ~ Contract Title ~ RIGIFA

Lab No	2319326	2319327
Sample ID ~	HP01	HP01
Depth ~	0.20	0.60
Other ID ~		
Sample Type ~	SOIL	SOIL
Sampling Date ~	30/03/2024	30/03/2024
Sampling Time ~	n/s	n/s

Test	Method	LOD	Units		
OCPs					
alpha-BHC	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
gamma-BHC (Lindane)	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
beta-BHC	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
delta-BHC	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Heptachlor	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Aldrin	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Heptachlor epoxide	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
gamma-Chlordane	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endosulphan I & Alpha-chlorodane	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4,4-DDE	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Dieldrin	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endrin	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endosulphan II & 4,4-DDD	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endrin aldehyde	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
4,4-DDT	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endosulphan sulphate	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Methoxychlor	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1
Endrin ketone	DETSC 3433*	0.1	mg/kg	< 0.1	< 0.1

Symbol key at end of report Page 2 of 4

Our Ref 24-06681 Client Ref ~ Contract Title ~ RIGIFA

				Threshold S					SOM S	SOM1/
Job	Lab No Sam	nple ID Depth	Other ID	Test Re	sult	Upper	Lower	Threshold	Result 9	SOM6
No Breaches										

Symbol key at end of report Page 3 of 4

Information in Support of the Analytical Results

Our Ref 24-06681 Client Ref ~ Contract ~ RIGIFA

Containers Received & Deviating Samples

				Holding time	Inappropriat
		Date		exceeded for	e container
Lab No	Sample ID ~	Sampled ~	Containers Received	tests	for tests
2319326	HP01 0.20 SOIL	30/03/24	GJ 250ml, GJ 60ml, PT 1L		
2319327	HP01 0.60 SOIL	30/03/24	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :- Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Key:

- ${\color{gray}{^{\sim}}}$ Sample details are provided by the client and can affect the validity of the results
- * -not accredited
- #-MCERTS (accreditation only applies if report carries the MCERTS logo).
- \$ -subcontracted.
- n/s -not supplied.
- I/S -insufficient sample.
- **U/S** -unsuitable sample.
- t/f -to follow.
- **nd** -not detected.

End of Report

Symbol key at end of report Page 4 of 4

LABORATORY TEST CERTIFICATE

Certificate No : 24/304 - 01-1

To: Mark Lane

Client : Curtins Ltd.

1a Belford Road Edinburgh EH4 3BL 10 Queenslie Point Queenslie Industrial Estate 120 Stepps Road Glasgow

Tel: 0141 774 4032

G33 3NQ

email: info@mattest.org Website: www.mattest.org

LABORATORY TESTING OF SOIL

Introduction

We refer to samples taken from Rigifa and delivered to our laboratory on 12th March 2024.

Material & Source

Sample Reference : See Report Plates

Sampled By : Client

Sampling Certificate : Not Supplied

Location : See Report Plates

Description : See Page 2 to Page 4 inclusive

Date Sampled : Not Supplied

Date Tested : 12th March 2024 Onwards

Source : 085449 - Rigifa

Test Results

As Detailed On Page 2 to Page 40 inclusive

Comments

The results contained in this report relate to the sample(s) as received Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory All remaining samples for this project will be disposed of 28 days after issue of this test certificate

Remarks

_

Date 09/04/2024

Issue No. 01 Page 1 of 40

TRIAL PIT	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
TP01	В	0.60	Brown slightly gravelly very sandy very silty CLAY. Gravel is fine to coarse.
TP02	В	0.60	Brown slightly silty clayey fine to coarse SAND and GRAVEL with black staining.
TP03	В	1.25	Brown fine to cobble-sized CRUSHED ROCK with cobbles.
TP04	В	1.00	Brown slightly clayey slightly sitly fine to coarse CRUSHED ROCK / highly weathered MUDSTONE.
TP05	В	1.50	Brown very gravelly very sandy very silty CLAY with root fibres. Gravel is fine to coarse.
TP07	В	1.00	Mottled brown / grey gravelly very silty very sandy CLAY. Gravel is fine to coarse.
TP08	В	1.00	Brown slightly clayey slightly silty fine to coarse CRUSHED ROCK.
TP09	В	0.60	Brown gravelly sandy CLAY with root fibres / black staining. Gravel is fine to coarse.
TP10	В	0.60	Brown very gravelly very clayey very sandy SILT with root fibres / black staining. Gravel is fine to coarse
TP11	В	0.60	Brown slightly silty very clayey fine to coarse CRUSHED ROCK with cobbles.
TP12	В	0.60	Brown slightly gravelly sandy CLAY with root fibres / black staining. Gravel is fine to medium.
TP13	В	1.50	Brown very gravelly slightly slightly sandy CLAY. Gravel is fine to coarse.
TP14	В	0.60	Brown gravelly sandy CLAY with black staining / root fibres. Gravel is fine to coarse.
TP15	В	0.60	Brown slightly gravelly very silty very sandy CLAY with root fibres. Gravel is fine to coarse.
TP17	В	0.25	Brown slightly gravelly very sandy PEAT. Gravel is fine to coarse. (Von Post Classification - H5)
TP18	В	1.00	Brown / grey gravelly very silty very sandy CLAY with black staining. Gravel is fine to coarse.
TP19	В	0.60	Brown slightly gravelly slightly silty sandy CLAY. Gravel is fine to coarse.
TP21	В	0.30	Brown very gravelly very sandy PEAT. Gravel is fine to coarse. (Von Post Classification - H5)
TP23	В	1.20	Brown clayey very silty very sandy fine to coarse GRAVEL.

SUMMARY OF SAMPLE DESCRIPTIONS

TRIAL PIT	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
TP24	В	0.70	Brown slightly clayey silty CRUSHED ROCK / highly weathered MUDSTONE.
TP25	В	0.90	Brown slightly gravelly very sandy very silty CLAY with root fibres / black staining. Gravel is fine to medium.
TP27	В	1.00	Brown clayey silty fine to coarse SAND and GRAVEL with cobbles and highly weathered mudstone fragments.
TP28	В	0.60	Brown slightly clayey PEAT. (Von Post Classification - H5)

SUMMARY OF SAMPLE DESCRIPTIONS

BOREHOLE	SAMPLE	DEPTH (m)	SAMPLE DESCRIPTION
BH01	В	0.80	Brown slightly gravelly very sandy CLAY with root fibres. Gravel is fine to coarse.
вн03	В	1.90	Brown slightly gravelly sandy CLAY with root fibres. Gravel is fine to coarse.
BH04	В	1.00	Brown gravelly sandy CLAY with root fibres. Gravel is fine to coarse.
BH05	В	1.80	Brown very gravelly very sandy CLAY / TOPSOIL with root fibres. Gravel is fine to coarse.
ВН06	В	1.80	Brown silty sandy clayey fine to coarse GRAVEL with root fibres.
ВН07	b B	1.20-1.60	Brown very gravelly very silty very sandy CLAY with root fibres / black staining. Gravel is fine to coarse.

SUMMARY OF SAMPLE DESCRIPTIONS

TRIAL PIT	SAMPLE	DEPTH (m)	WATER CONTENT (%)
TP01	В	0.60	23.0
TP03	В	1.25	11.0
TP05	В	1.50	17.3
TP07	В	1.00	22.3
TP08	В	1.00	15.5
TP10	В	0.60	18.1
TP11	В	0.60	12.8
TP13	В	1.50	20.0
TP15	В	0.60	17.6
TP17	В	0.25	66.2
TP18	В	1.00	18.6
TP21	В	0.30	41.8
TP23	В	1.20	21.2
TP25	В	0.90	24.9
TP27	В	1.00	17.3
TP28	В	0.60	30.9

Tested in accordance with BS 1377 - 2: 2022: Clause 4.1

SUMMARY OF WATER CONTENT TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	WATER CONTENT (%)
BH01	В	0.80	26.4
BH03	В	1.90	27.5
BH05	В	1.80	29.8
BH06	В	1.80	19.2

Tested in accordance with BS 1377 - 2: 2022: Clause 4.1

SUMMARY OF WATER CONTENT TEST RESULTS

TRIAL PIT	SAMPLE	DEPTH (m)	WATER CONTENT (%)	BULK DENSITY (Mg/m³)	DRY DENSITY (Mg/m³)
TP02	В	0.60	16.7	1.99	1.71
TP04	В	1.00	15.8	1.98	1.71
TP09	В	0.60	22.3	1.92	1.57
TP12	В	0.60	18.2	1.97	1.67
TP14	В	0.60	17.5	1.99	1.69
TP19	В	0.60	22.8	1.97	1.60
TP27	В	1.00	17.3	1.96	1.67

Tested in accordance with BS 1377 - 2 : 2022 : Clause 8 Bulk Density : Linear Measurement

SUMMARY OF WATER CONTENT AND BULK DENSITY TEST RESULTS

BOREHOLE	SAMPLE	DEPTH (m)	WATER CONTENT (%)	BULK DENSITY (Mg/m³)	DRY DENSITY (Mg/m³)
BH04	В	1.00	17.7	1.94	1.65

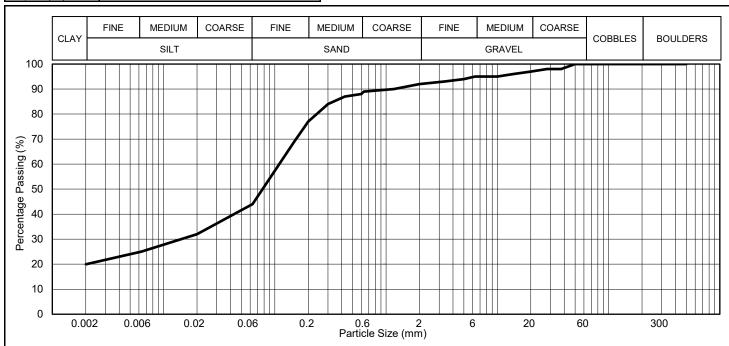
Tested in accordance with BS 1377 - 2 : 2022 : Clause 8 Bulk Density : Linear Measurement

SUMMARY OF WATER CONTENT AND BULK DENSITY TEST RESULTS

TRIAL PIT	SAMPLE	DEPTH (m)	PARTICLE DENSITY (Mg/m³)
TP02	В	0.60	2.58
TP04	В	1.00	2.56
TP09	В	0.60	2.55
TP12	В	0.60	2.47
TP14	В	0.60	2.49
TP19	В	0.60	2.52
TP24	В	0.70	2.51
TP27	В	1.00	2.50

Tested in accordance with BS 1377 - 2 : 2022 : Clause 9.2 (Gas jar method)

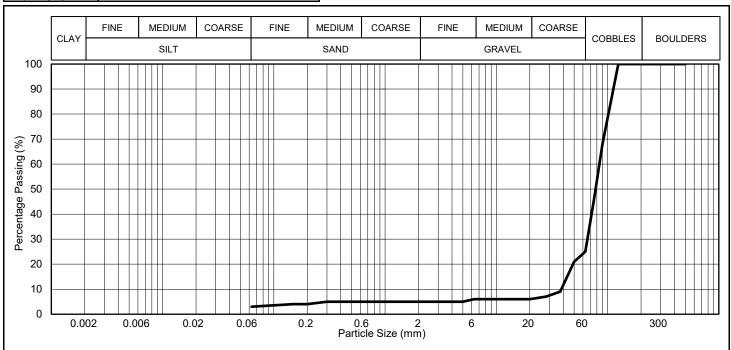
SUMMARY OF PARTICLE DENSITY TEST RESULTS


			DADTIOLE
BOREHOLE	SAMPLE	DEPTH	PARTICLE DENSITY
BORLINGLE	JAMIF LL	(m)	(Mg/m³)
		(/	(g)
BH04	В	1.00	2.49

Tested in accordance with BS 1377 - 2 : 2022 : Clause 9.2 (Gas jar method)

SUMMARY OF PARTICLE DENSITY TEST RESULTS

Borehole	TP01
Sample	В
Depth (m)	0.60

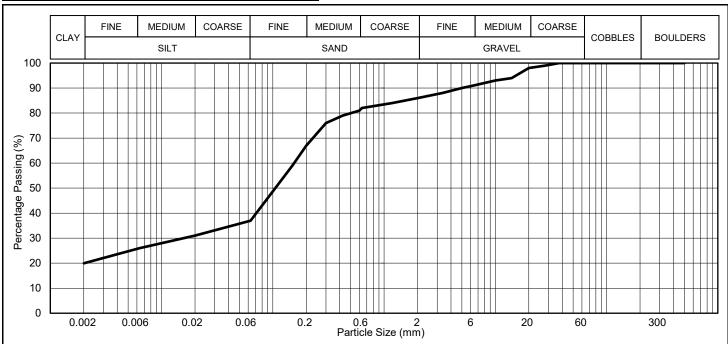

SIEVING			SEDI	MENTATIO	ON (Assun	ned ps of 2	2.65Mg/m³)
Percentage Passing							
•		•		e Size (mn	າ) F	Percentage	Passing (%)
(70)	Lower %	Upper %					
100	-	-	(0.0200		3	2
100	-	-	(0.0063		2	25
100	-	-	(0.0020		2	.0
100	-	-					
100	-	-	GRAD	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
100	-	-					
100	-	-			-		
98	-	-	Grading classification proves the material has met the relevant gra- requirements only. Further testing may be required to assess compliance with SHW.				
98	-	-					assess
97	-	-					
96	-	-					
95	-	-		PERC	ENTAGE S	SOIL TYPE	S
95	-	-	CLAV	QII T T	SVND	GDAVEI	COBBLES
94	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
93	-	-	20	24	48	8	0
92	-	-					
90	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
89	-	-		10	7	60	
88	-	-			Specification		
87	-	-		-		-	•
84	-	-	UNIFORM	IITY COEF	FICIENT	-	-
77	-	-					
69	-	-					
	Percentage Passing (%) 100 100 100 100 100 100 100 100 98 98 98 97 96 95 95 95 95 94 93 92 90 89 88 87 84 77	Percentage Passing (%) (%) 100 100 100 100 100 100 100 1	Percentage Passing (%) Not Applicable Lower % Upper %	Percentage Passing (%)	Percentage Passing (%)	Percentage Passing (%)	Percentage Passing (%)

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Borehole	TP03
Sample	В
Depth (m)	1.25

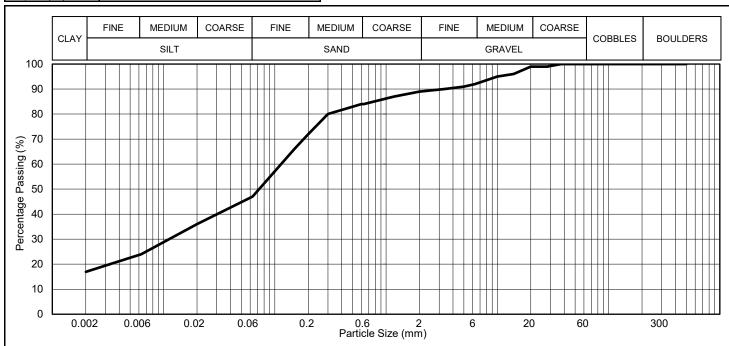
SIEVING				SEDI	MENTATION	ON (Assur	ned ps of 2	2.65Mg/m³)
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)	Not Ap	plicable	Particle Size (mm)		n) F	Percentage Passing (%	
	(70)	Lower %	Upper %					
500.0	100	-	-	(0.0200			
300.0	100	-	-	(0.0063			
125.0	100	-	-	(0.0020			
90.0	68	-	-					
75.0	45	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	25	-	-					
50.0	21	-	-			-		
37.5	9	-	-					ne relevant grading
28.0	7	-	-	requirements only. Further testing may be required to assess compliance with SHW.				o assess
20.0	6	-	-					
14.0	6	-	-					
10.0	6	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	6	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	5	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	5	-	-	/	3	2	20	75
2.000	5	-	-					
1.180	5	-	-	UNIFORM	NITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	5	-	-		10		60	
0.600	5	-	-	٦ ا	10	u	00	Specification
0.425	5	-	-		-		-	
0.300	5	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	4	-	-					
0.150	4	-	-	1				


0.063

3

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

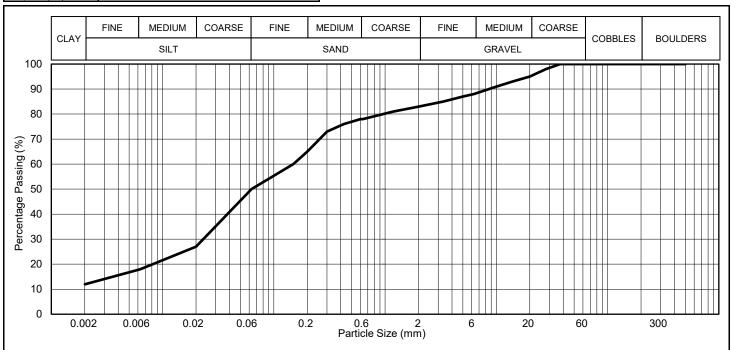
Borehole	TP05
Sample	В
Depth (m)	1.50



SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)		plicable	Particl	e Size (mn	n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-	0.0200 31			31	
300.0	100	-	-	(0.0063		2	26
125.0	100	-	-	(0.0020		2	20
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-					e relevant grading
28.0	99	-	-	requirements only. Further testing may be required to assess compliance with SHW.				o assess
20.0	98	-	-	compliance \	with SHVV.			
14.0	94	-	-					
10.0	93	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	91	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	90	-	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.350	88	-	-	20	17	49	14	0
2.000	86	-	-					
1.180	84	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	82	-	-	D	10	_	60	
0.600	81	-	-	D10			60	Specification
0.425	79	-	-		-		-	
0.300	76	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	67	-	-					
0.150	59	-	-					
0.063	37	-	-					

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

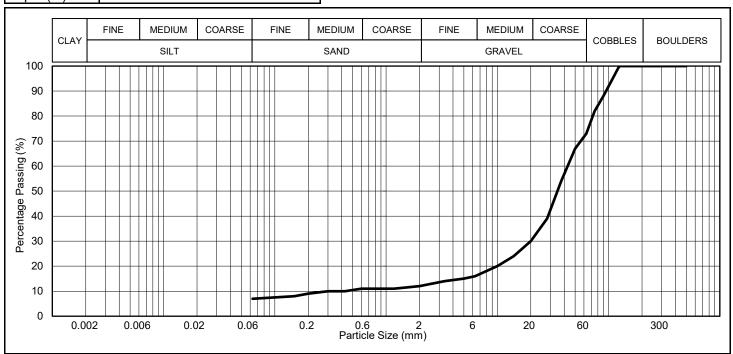
Borehole	TP07
Sample	В
Depth (m)	1.00


	SIEVING			SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Ciarra Ciar (carra)	Percentage Passing		ication	Dantial	- 0: (- \) -	Di (0/)
Sieve Size (mm)	(%)		plicable		e Size (mn	ו) ו	rercentage	Passing (%)
	1 1	Lower %	Upper %					
500.0	100	-	-		0.0200			86
300.0	100	-	-	(0.0063			24
125.0	100	-	-	(0.0020		1	7
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-	Grading classification proves the material has met the relevant gra- requirements only. Further testing may be required to assess compliance with SHW.				
28.0	99	-	-					o assess
20.0	99	-	-					
14.0	96	-	-					
10.0	95	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	92	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	91	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	90	-	-	17	30	42	11	0
2.000	89	-	-					
1.180	87	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	84	-	-		40	_	60	
0.600	84	-	-	D10 D60 Spec		Specification		
0.425	82	-	-	,	-		-	-
0.300	80	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	72	-	-					
0.150	66	•	-					

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

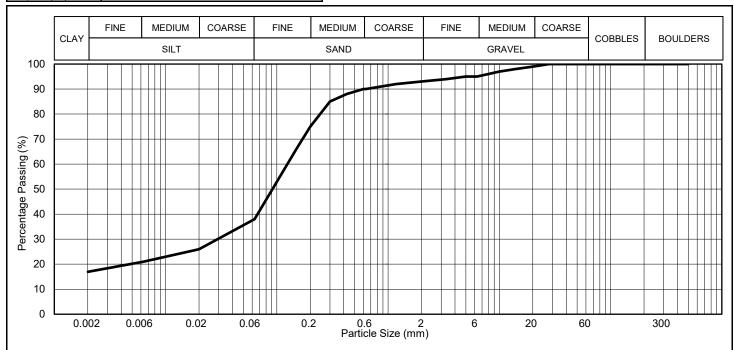
Borehole	TP10
Sample	В
Depth (m)	0.60


SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Sieve Size (mm)	Percentage Passing	Specifi Not Ap	ication plicable	Particle Size (mm)		n) F	Percentage Passing	
,	(%)	Lower %			`	′	J	3 ()
500.0	100	-	-	(0.0200		2	.7
300.0	100	-	-	(0.0063		1	8
125.0	100	-	-	(0.0020		1	2
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-	Grading classification proves the material has met the relevant grad				
28.0	98	-	-	requirements only. Further testing may be required to assess compliance with SHW.				assess
20.0	95	-	-					
14.0	93	-	-					
10.0	91	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	88	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	87	-	-	CLAI	SIL1 T	SAND	GRAVEL	COBBLES
3.350	85	-	-	12	38	33	17	0
2.000	83	-	-					
1.180	81	-	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 N				LE 6/1 NOTE 5)
0.630	78	-	-	D10 D60 S				
0.600	78	-	-			U		Specification
0.425	76	-	-			-		
0.300	73	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	65	-	-					
0.150	60	-	-					

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

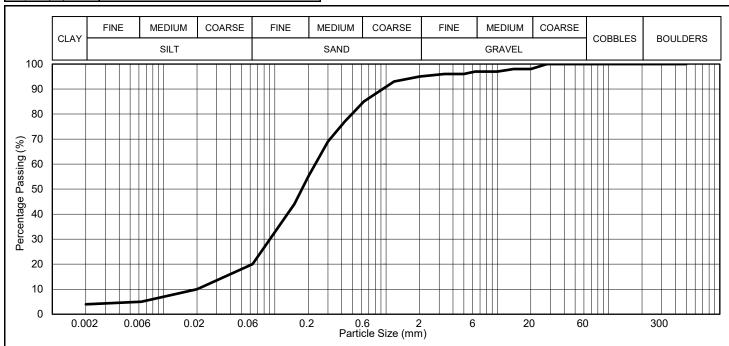
Borehole	TP11
Sample	В
Depth (m)	0.60


SIEVING				SEDIMENTATION (Assumed ρs of 2.65Mg/m³)				
	Percentage Passing	Specif	ication					
Sieve Size (mm)		Not Ap	plicable	Particl	Particle Size (mm)		Percentage Passing (
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200			
300.0	100	-	-	(0.0063			
125.0	100	-	-	(0.0020			
90.0	88	-	-					
75.0	82	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	73	-	-					
50.0	67	-	-			-		
37.5	54	-	-	Grading classification proves the material has met the relevant gra				
28.0	39	-	-	requirements only. Further testing may be required to assess				o assess
20.0	30	-	-	compliance	with SHVV.			
14.0	24	-	-					
10.0	20	-	-		PERC	ENTAGE :	SOIL TYPE	S
6.3	16	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	15	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	14	-	-	/	7	5	61	27
2.000	12	-	-					
1.180	11	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	11	-	-	D10 D60				
0.600	11	-	-			"	טסי	Specification
0.425	10	-	-					
0.300	10	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	9	-	-					
0.150	8	-	-					

0.063

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

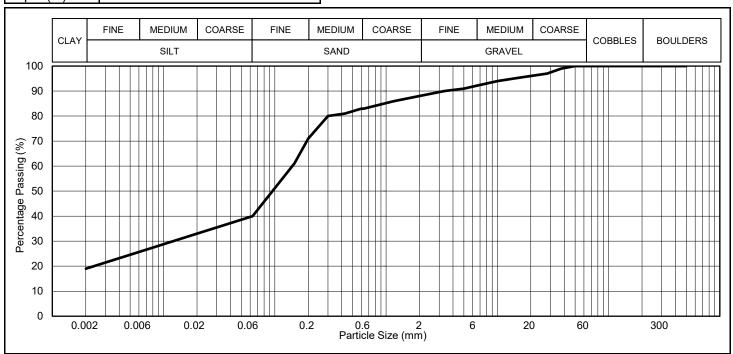
Borehole	TP15
Sample	В
Depth (m)	0.60


	SIEVING			SEDI	MENTATION	ON (Assur	ned ps of 2	2.65Mg/m³)
	Percentage Passing		ication					
Sieve Size (mm)	-	Not Ap	plicable	Particl	Particle Size (mm)		Percentage	Passing (%)
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200		2	26
300.0	100	-	-	(0.0063		2	21
125.0	100	-	-	(0.0020		1	17
90.0	100	-	-			•		
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					•
50.0	100	-	-	1		-		
37.5	100	-	-	Grading classification proves the material has met the relevant grad				
28.0	100	-	-	requirements only. Further testing may be required to assess				o assess
20.0	99	-	-	compliance with SHW.				
14.0	98	-	-					
10.0	97	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	95	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	95	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES
3.350	94	-	-	17	21	55	7	0
2.000	93	-	-		-	-		
1.180	92	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5
0.630	90	-	-	_	40		60	
0.600	90	-	-	D10		ں ا	60	Specification
0.425	88	-	-	-			-	1
0.300	85	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	75	-	-					-
0.150	66	_	-	1				

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

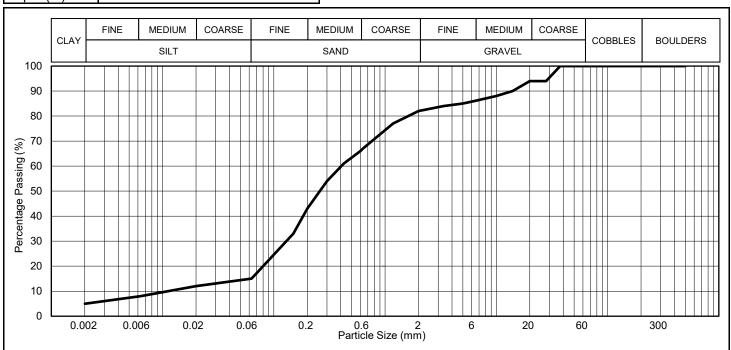
Borehole	TP17
Sample	В
Depth (m)	0.25



SIEVING				SEDIMENTATION (Assumed ρs of 2.65Mg/m³)				
	Percentage Passing	Specif						
Sieve Size (mm)	(%)		plicable		e Size (mn	n) F	Percentage Passing (%)	
	(70)	Lower %	Upper %					
500.0	100	•	-	(0.0200		1	0
300.0	100	•	-	(0.0063		,	5
125.0	100	•	-	(0.0020		•	4
90.0	100	•	-					
75.0	100	•	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	•	-			_		
50.0	100	•	-			_		
37.5	100	-	-					e relevant grading
28.0	100	-	-	requirements only. Further testing may be required to assess compliance with SHW.				o assess
20.0	98	-	-	compliance v	WILIN SHVV.			
14.0	98	-	-					
10.0	97	•	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	97	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	96	•	-	CLAI	JILI T	SAND	GRAVLL	COBBLES
3.350	96	•	-	4	16	75	5	0
2.000	95	•	-					
1.180	93	•	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	85	•	-	D10 D60				
0.600	84	•	-				00	Specification
0.425	77	-	-	-		-]
0.300	69	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	55	-	-					
0.150	44	-	-					
0.063	20	-	-					

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

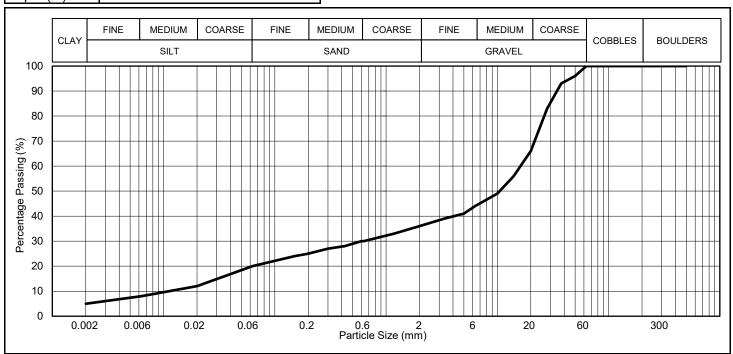
Borehole	TP18
Sample	В
Depth (m)	1.00


SIEVING				SEDIMENTATION (Assumed ρs of 2.65Mg/m³)				
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)		plicable	Particl	e Size (mn	n) F	Percentage Passing (%	
	(70)	Lower %	Upper %					
500.0	100	-	-	(0.0200		3	33
300.0	100	•	-	(0.0063		2	26
125.0	100	-	-	(0.0020		1	9
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-	1		-		
37.5	99	-	-	Grading classification proves the material has met the relevant gra-				
28.0	97	-	-	requirements only. Further testing may be required to assess compliance with SHW.				o assess
20.0	96	-	-					
14.0	95	-	-					
10.0	94	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	92	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	91	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	90	-	-	19	21	48	12	0
2.000	88	-	-					
1.180	86	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	83	-	-	D10 D60 Sp				
0.600	83	-	-			u	00	Specification
0.425	81	-	-					
0.300	80	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	71	-	-					
0.150	61	-	-					

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

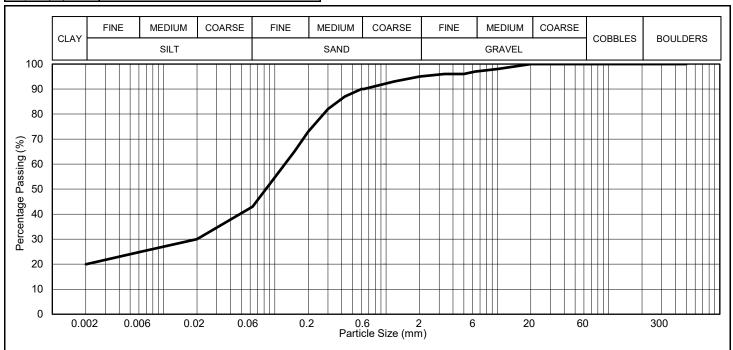
Borehole	TP21
Sample	В
Depth (m)	0.30


SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Sieve Size (mm)	Percentage Passing	Specif Not Ap	ication plicable	Particle Size (mm)		n) F	Percentage Passing	
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200		1	2
300.0	100	•	-	(0.0063		(3
125.0	100	•	-	(0.0020		·	5
90.0	100	-	-					
75.0	100	-	-	GRAD	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-	Grading classification proves the material has met the relevant grad				
28.0	94	-	-	requirements only. Further testing may be required to assess compliance with SHW.				assess
20.0	94	-	-					
14.0	90	•	-					
10.0	88	•	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	86	•	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	85	•	-	CLAI	SILI T	SAND	GRAVEL	COBBLES
3.350	84	•	-	5	10	67	18	0
2.000	82	•	-					
1.180	77	•	-	UNIFORMITY COEFFICIENT (SHW TABLE 6/1 N				LE 6/1 NOTE 5)
0.630	67	•	-	D10 D60 S				
0.600	66	•	-			<u> </u>	00	Specification
0.425	61	•	-			-		
0.300	54	•	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	43	•	-					_
0.150	33	-	-					

0.063

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

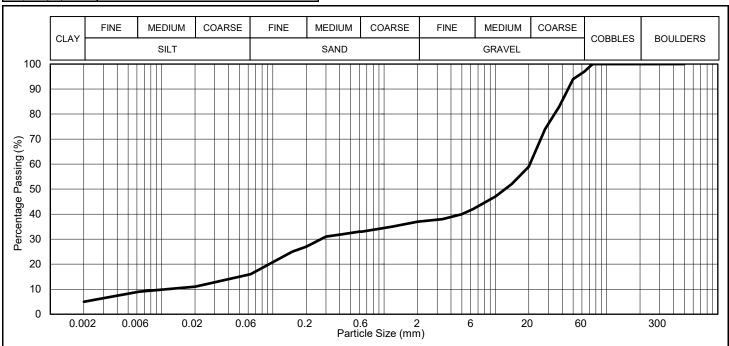
Borehole	TP23
Sample	В
Depth (m)	1.20


SIEVING				SEDIMENTATION (Assumed ρs of 2.65Mg/m³)				
	Percentage Passing	Specif	ication					
Sieve Size (mm)	(%)	Not Applicable		Particle Size (mm		n) F	Percentage	Passing (%)
	(70)	Lower %	Upper %					
500.0	100	-	-	(0.0200		1	2
300.0	100	-	-	(0.0063		(3
125.0	100	-	-	(0.0020		;	5
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	96	-	-			-		
37.5	93	-	-	Grading classification proves the material has met the relevant grading				
28.0	83	-	-	requirements only. Further testing may be required to assess				
20.0	66	-	-	compliance \	WITH SHVV.			
14.0	56	-	-					
10.0	49	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	44	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	41	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	39	-	-	5	15	16	64	0
2.000	36	-	-					
1.180	33	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	30	-	-	D10 D60				
0.600	30	-	-	D10			00	Specification
0.425	28	-	-		-		-	
0.300	27	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	25	-	-					
0.150	24	-	-					

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

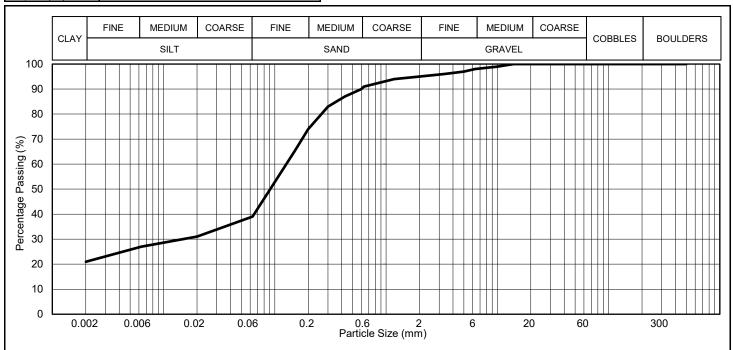
Borehole	TP25
Sample	В
Depth (m)	0.90


SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
	Doroontogo Dogging	Specif	Specification					
Sieve Size (mm)	Percentage Passing	Not Ap	plicable	Particl	e Size (mn	n) F	Percentage Passing (%	
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200		3	30
300.0	100	-	-		0.0063		2	25
125.0	100	-	-		0.0020		2	20
90.0	100	-	-					
75.0	100	-	-	GRAI	DING CLA	SSIFICATI	ON (SHW '	TABLE 6/2)
63.0	100	-	-					
50.0	100	-	-			-		
37.5	100	-	-	Grading classification proves the material has met the relevant gradi requirements only. Further testing may be required to assess				
28.0	100	-	-					
20.0	100	-	-	compliance	with SHVV.			
14.0	99	-	-					
10.0	98	-	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	97	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	96	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	96	-	-	20	23	52	5	0
2.000	95	-	-					
1.180	93	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	90	-	-	D10 D60				
0.600	90	-	-			٥ ا	ου	Specification
0.425	87	-	-		-		-	
0.300	82	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	73	-	-					
0.150	65	-	-					
		t e	i	1				

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

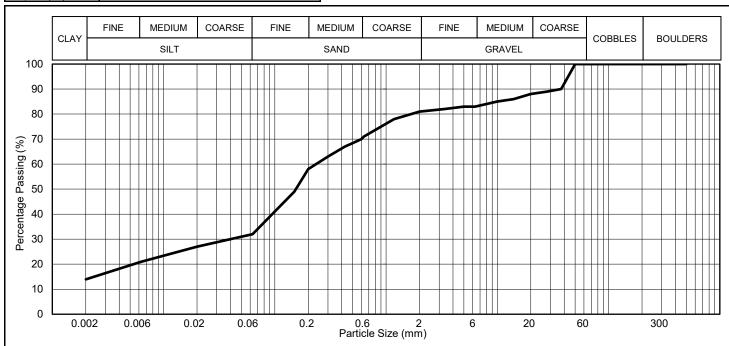
Borehole	TP27
Sample	В
Depth (m)	1.00



SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Sieve Size (mm)	Percentage Passing		ication plicable	Particle Size (mm)		n) F	Percentage Passing (
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200		11	
300.0	100	-	-	(0.0063		!	9
125.0	100	•	-	(0.0020		;	5
90.0	100	•	-					
75.0	100	•	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	97	•	-					
50.0	94	-	-			-		
37.5	83	-	-					e relevant grading
28.0	74	-	-	requirements only. Further testing may be required to assess compliance with SHW.				
20.0	59	-	-	compliance	WILIN SHVV.			
14.0	52	•	-					
10.0	47	•	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	42	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	40	•	-	CLAI	JILI T	SAND	GIVAVLL	COBBLES
3.350	38	-	-	5	11	21	60	3
2.000	37	-	-					
1.180	35	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	33	-	-	- D10 D60				
0.600	33	-	-				Specification	
0.425	32	-	-	-			-	
0.300	31	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	27	-	-					
0.150	25	-	-					
0.063	16	-	-					

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

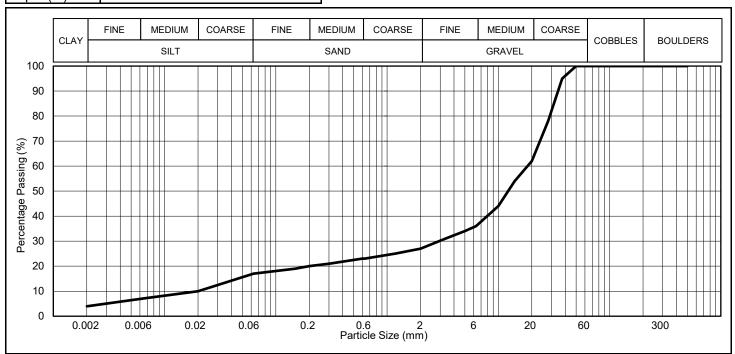
Borehole	BH01
Sample	В
Depth (m)	0.80


SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)	
	Percentage Passing		ication	_					
Sieve Size (mm)	(%)		plicable		Particle Size (mm)		Percentage Passing (%		
	(70)	Lower %	Upper %						
500.0	100	•	-	(0.0200		3	51	
300.0	100	•	-	(0.0063		2	27	
125.0	100	-	-	(0.0020		2	<u>.</u> 1	
90.0	100	-	-						
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)	
63.0	100	-	-						
50.0	100	-	-			-			
37.5	100	-	-					e relevant grading	
28.0	100	-	-	requirements only. Further testing may be required to assess					
20.0	100	-	-	compliance \	with SHW.				
14.0	100	-	-						
10.0	99	-	-		PERC	ENTAGE S	SOIL TYPE	S	
6.3	98	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES	
5.0	97	-	-	CLAT	SILI +	SAND	GRAVEL	COBBLES	
3.350	96	-	-	21	18	56	5	0	
2.000	95	-	-		-				
1.180	94	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)	
0.630	91	-	-						
0.600	90	-	-	D10		٥ ا	D60 Specific		
0.425	87	-	-	'					
0.300	83	-	-	UNIFORM	IITY COEF	FICIENT	-	-	
0.200	74	-	-						
0.150	65	-	-						

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Borehole	BH05
Sample	В
Depth (m)	1.80

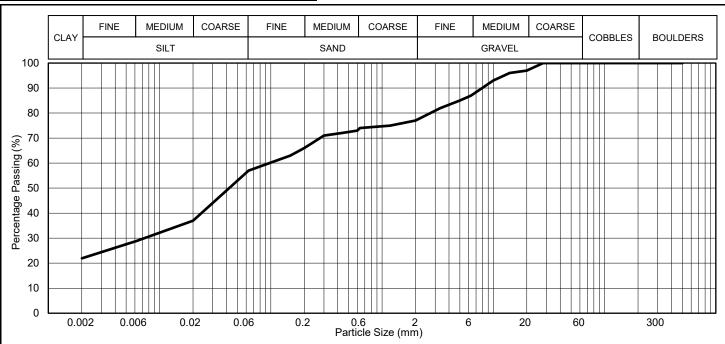


SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Sieve Size (mm)	Percentage Passing (%)	Specif Not Ap Lower %	ication plicable Upper %	Particle Size (mm)		n) F	Percentage Passing (%	
500.0	100	LOWEI 70	- Opper 70	(0.0200		27	
300.0	100	_	_		0.0063			 !1
125.0	100	-	-		0.0020			4
90.0	100	-	-			<u>.</u>		
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)
63.0	100	-	-					,
50.0	100	-	-			-		
37.5	90	-	-					e relevant grading
28.0	89	-	-	requirements only. Further testing may be required to assess				
20.0	88	-	-	compliance with SHW.				
14.0	86	-	-					
10.0	85	•	-		PERC	ENTAGE S	SOIL TYPE	S
6.3	83	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	83	•	-	CLAI	JILI T	SAND	GIVAVLL	COBBLES
3.350	82	-	-	14	18	49	19	0
2.000	81	-	-					
1.180	78	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	71	-	-	D10 D60 S				
0.600	70	-	-				Specific	
0.425	67	-	-	-			-	
0.300	63	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	58	-	-					
0.150	49	-	-					
0.063	32	-	-					

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Borehole	BH06
Sample	В
Depth (m)	1.80

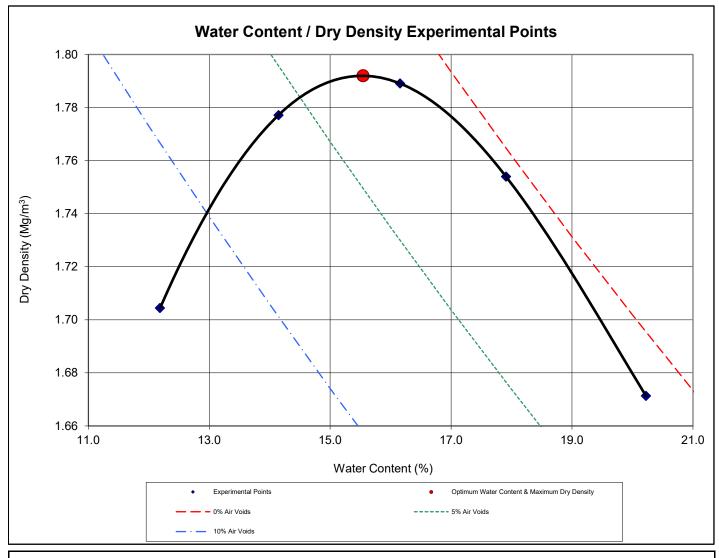
SIEVING				SEDIMENTATION (Assumed ρs of 2.65Mg/m³)					
	Percentage Passing	Specif	ication						
Sieve Size (mm)	(%)	Not Applicable		Particle Size (m		n) Percentage		Passing (%)	
	(70)	Lower %	Upper %						
500.0	100	-	-	(0.0200		1	0	
300.0	100	•	-	(0.0063		•	7	
125.0	100	-	-	(0.0020		•	4	
90.0	100	-	-						
75.0	100	-	-	GRAI	DING CLAS	SSIFICATI	ON (SHW	TABLE 6/2)	
63.0	100	-	-						
50.0	100	-	-			-			
37.5	95	-	-	Grading classification proves the material has met the relevant gradi					
28.0	78	-	-	requirements only. Further testing may be required to assess compliance with SHW.					
20.0	62	-	-	compliance	WITH SHVV.				
14.0	54	-	-						
10.0	44	-	-		PERC	ENTAGE S	SOIL TYPE	S	
6.3	36	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES	
5.0	34	-	-	CLAI	SILI T	SAND	GRAVEL	COBBLES	
3.350	31	•	-	4	13	10	73	0	
2.000	27	-	-						
1.180	25	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)	
0.630	23	-	-	D10 D60					
0.600	23	-	-	ן טוע s		Specification			
0.425	22	-	-		-		-		
0.300	21	-	-	UNIFORM	IITY COEF	FICIENT	-	-	
0.200	20	-	-					_	
0.150	19	-	-						


0.063

17

T Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns Sample does not meet minimum mass requirement for material type

Borehole	BH07
Sample	В
Depth (m)	1.20-1.60



SIEVING				SEDI	MENTATIO	ON (Assur	ned ps of 2	2.65Mg/m³)
Sieve Size (mm) Percentage Passing	Specification							
	Not Applicable		Particle Size (mm) Percentage Passing (Passing (%)			
	(%)	Lower %	Upper %					
500.0	100	-	-	(0.0200		3	37
300.0	100	-	-	(0.0063		2	9
125.0	100	-	-	(0.0020		2	22
90.0	100	-	-					
75.0	100	-	-	GRADING CLASSIFICATION (SHW TABLE 6/2)		TABLE 6/2)		
63.0	100	-	-				•	
50.0	100	-	-			-		
37.5	100	-	-					e relevant grading
28.0	100	-	-	•	•	r testing may	be required to	o assess
20.0	97	-	-	compliance	with SHW.			
14.0	96	-	-					
10.0	93	-	-		PERC	ENTAGE :	SOIL TYPE	S
6.3	87	-	-	CLAY	SILT Ŧ	SAND	GRAVEL	COBBLES
5.0	85	-	-	CLAT	SILI T	SAND	GRAVEL	COBBLES
3.350	82	-	-	22	35	20	23	0
2.000	77	-	-					
1.180	75	-	-	UNIFORM	IITY COEF	FICIENT (SHW TAB	LE 6/1 NOTE 5)
0.630	74	-	-		10		60	
0.600	73	•	-	D10		Specification		
0.425	72	•	-		-		-	
0.300	71	-	-	UNIFORM	IITY COEF	FICIENT	-	-
0.200	66	-	-					
0.150	63	•	-					

0.063

Ŧ Where a sedimentation test was not carried out, this figure represents total fines, i.e., particles of diameter less than 63 microns

Preparation Method : Separate samples

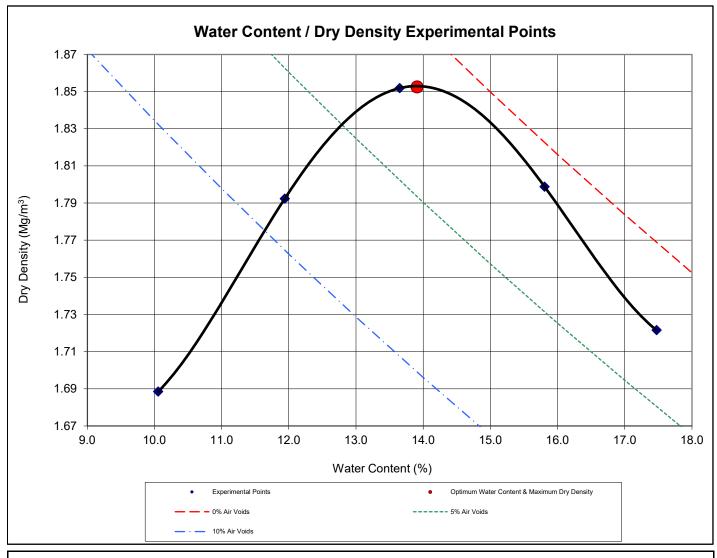
 % Passing 37.5mm
 : 85

 % Passing 20mm
 : 76

 Grading Zone
 : x

Particle Density : 2.58 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)

Experimental Points			
Water	Dry		
Content	Density		
(%)	(Mg/m ³)		
12.2	1.70		
14.1	1.78		
16.2	1.79		
17.9	1.75		
20.2	1.67		


Optimum Water Content (%)	Maximum Dry Density (Mg/m³)		
15.5	1.79		
Remarks			
Materials which contain more than 10% retained on a 37.5mm test sieve and 30% retained on a 20mm test			

Materials which contain more than 10% retained on a
37.5mm test sieve and 30% retained on a 20mm test
sieve are not suitable for this test (Zone X - BS 1377 - 2
: 2022 : 11, Figure 4). In this instance only material
passing the 37.5mm sieve was tested.

Borehole :	TP02
Sample :	В
Depth (m):	0.60

Tested in accordance with BS 1377 - 2: 2022

Preparation Method : Separate samples

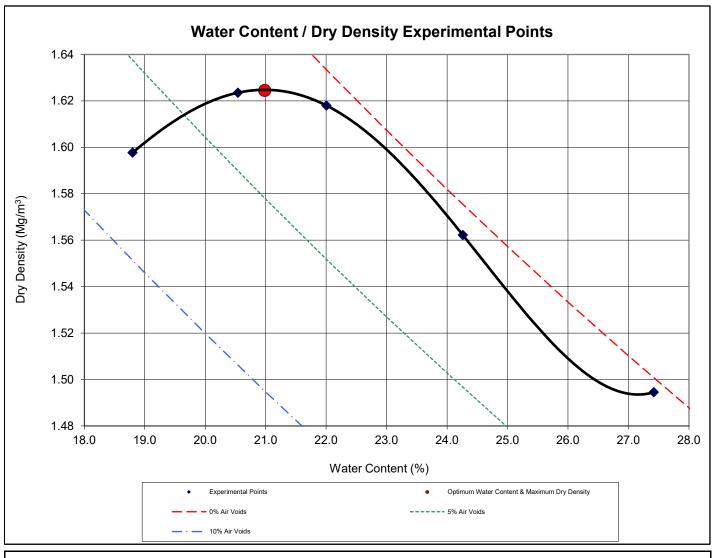
 % Passing 37.5mm
 : 78

 % Passing 20mm
 : 49

 Grading Zone
 : x

Particle Density : 2.56 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)

Experimental Points			
Water	Dry		
Content	Density		
(%)	(Mg/m ³)		
10.1	1.69		
11.9	1.79		
13.6	1.85		
15.8	1.80		
17.5	1.72		


Optimum Water Content (%)	Maximum Dry Density (Mg/m³)		
13.9	1.85		
Remarks			
Materials which contain more than 10% retained on a			

Materials which contain more than 10% retained on a 37.5mm test sieve and 30% retained on a 20mm test sieve are not suitable for this test (Zone X - BS 1377 - 2 : 2022 : 11, Figure 4). In this instance only material passing the 37.5mm sieve was tested.

Borehole :	TP04
Sample :	В
Depth (m):	1.00

Tested in accordance with BS 1377 - 2: 2022

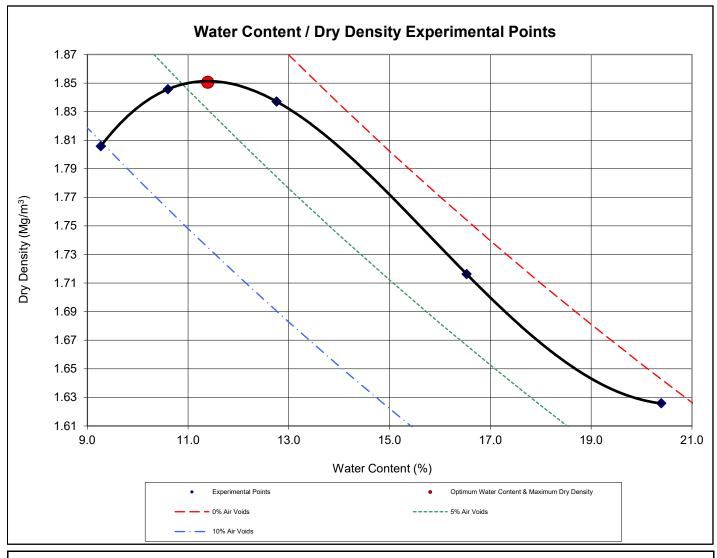
Preparation Method : Separate samples

 % Passing 37.5mm
 : 96

 % Passing 20mm
 : 90

 Grading Zone
 : 4

Particle Density : 2.55 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)


Experimental Points			
Water	Dry		
Content	Density		
(%)	(Mg/m ³)		
18.8	1.60		
20.5	1.62		
22.0	1.62		
24.3	1.56		
27.4	1.49		

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
21.0	1.62
Remarks	

Borehole :	TP09
Sample :	В
Depth (m):	0.60

Tested in accordance with BS 1377 - 2: 2022

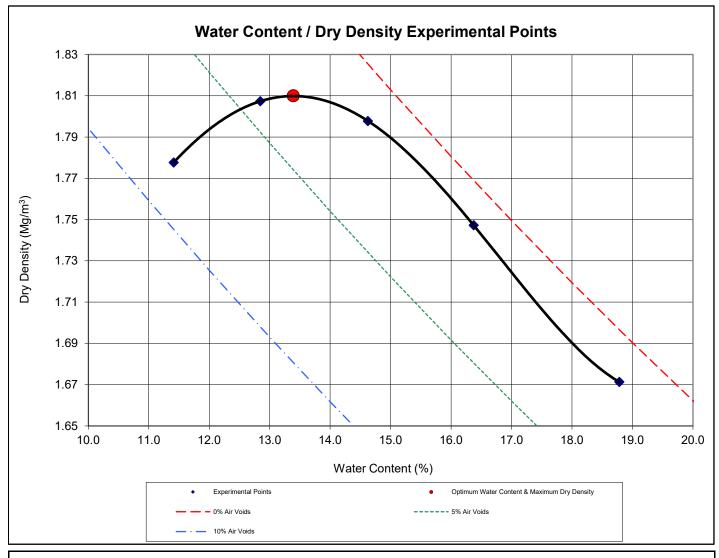
Preparation Method : Separate samples

 % Passing 37.5mm
 : 100

 % Passing 20mm
 : 100

 Grading Zone
 : 1

Particle Density : 2.47 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)


Experimental Points			
Water	Dry		
Content	Density		
(%)	(Mg/m ³)		
9.3	1.81		
10.6	1.85		
12.8	1.84		
16.5	1.72		
20.4	1.63		

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
11.4	1.85
Remarks	

Borehole :	TP12
Sample :	В
Depth (m):	0.60

Tested in accordance with BS 1377 - 2: 2022

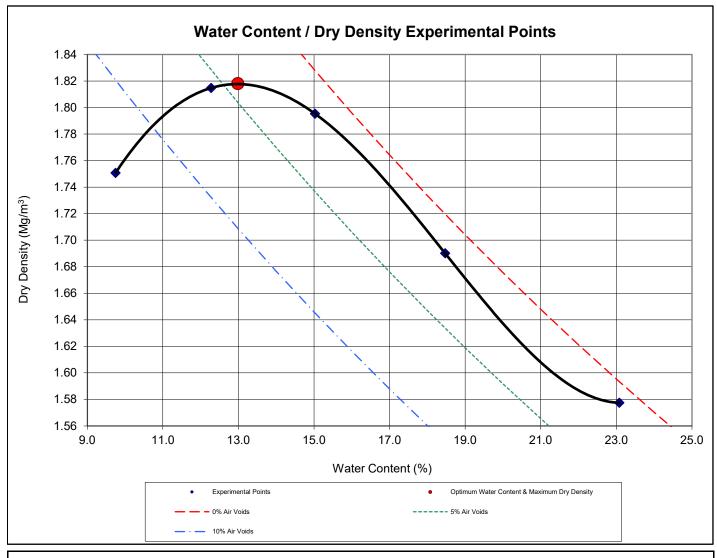
Preparation Method : Separate samples

 % Passing 37.5mm
 : 98

 % Passing 20mm
 : 97

 Grading Zone
 : 4

Particle Density : 2.49 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)


Experimental Points		
Water	Dry	
Content	Density	
(%)	(Mg/m ³)	
11.4	1.78	
12.8	1.81	
14.6	1.80	
16.4	1.75	
18.8	1.67	

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
13.4	1.81
Remarks	

Borehole :	TP14
Sample :	В
Depth (m):	0.60

Tested in accordance with BS 1377 - 2: 2022

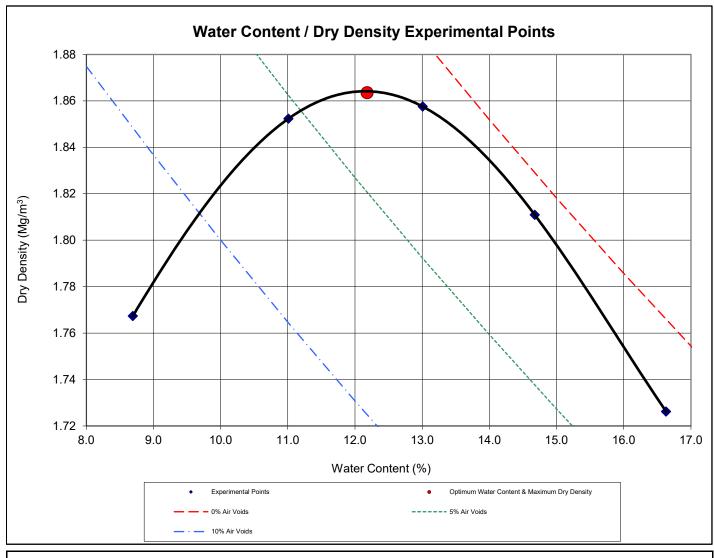
Preparation Method : Separate samples

 % Passing 37.5mm
 : 100

 % Passing 20mm
 : 99

 Grading Zone
 : 2

Particle Density : 2.52 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)


Experimental Points		
Water	Dry	
Content	Density	
(%)	(Mg/m ³)	
9.7	1.75	
12.3	1.81	
15.0	1.80	
18.5	1.69	
23.1	1.58	

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
13.0	1.82
Remarks	

Borehole :	TP19
Sample :	В
Depth (m):	0.60

Tested in accordance with BS 1377 - 2: 2022

Preparation Method : Separate samples

 % Passing 37.5mm
 : 83

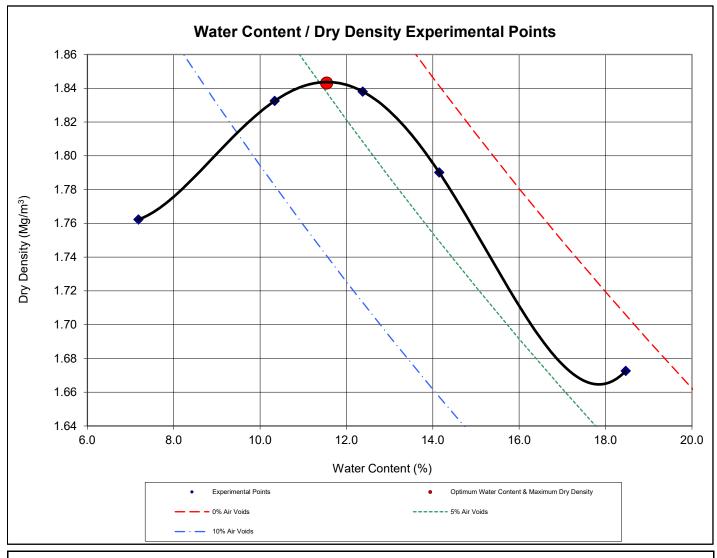
 % Passing 20mm
 : 59

 Grading Zone
 : x

Particle Density : 2.50 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)

Experimental Points		
Water	Dry	
Content	Density	
(%)	(Mg/m ³)	
8.7	1.77	
11.0	1.85	
13.0	1.86	
14.7	1.81	
16.6	1.73	

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
12.2	1.86
Remarks	


Materials which contain more than 10% retained on a 37.5mm test sieve and 30% retained on a 20mm test sieve are not suitable for this test (Zone X - BS 1377 - 2 : 2022 : 11, Figure 4). In this instance only material

passing the 37.5mm sieve was tested.

Borehole :	TP27
Sample :	В
Depth (m):	1.00

Tested in accordance with BS 1377 - 2: 2022

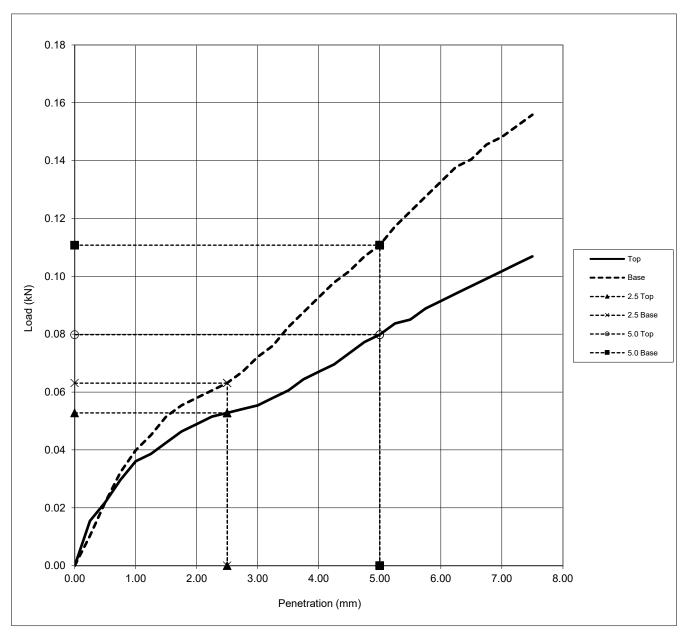
Preparation Method : Separate samples

 % Passing 37.5mm
 92

 % Passing 20mm
 82

 Grading Zone
 5

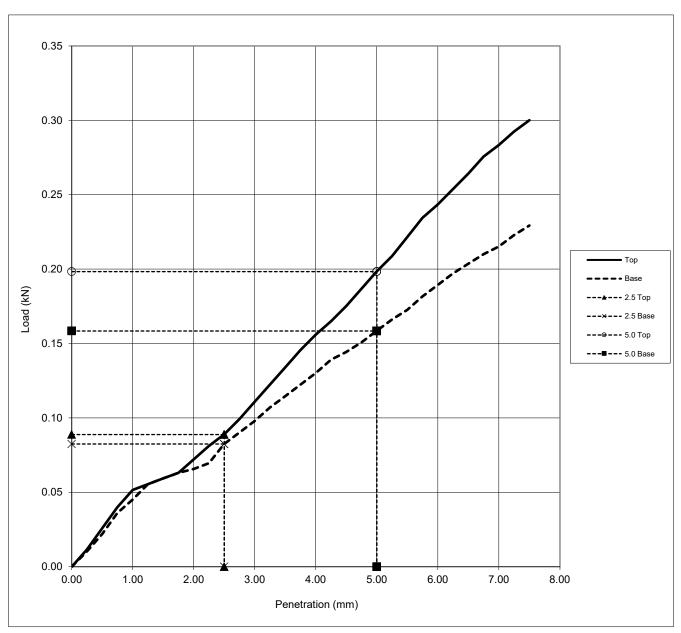
Particle Density : 2.49 Mg/m³ (Measured in accordance with BS 1377 - 2 : 2022 : Clause 9)


Experimental Points		
Water	Dry	
Content	Density	
(%)	(Mg/m ³)	
7.2	1.76	
10.3	1.83	
12.4	1.84	
14.1	1.79	
18.5	1.67	

Optimum Water Content (%)	Maximum Dry Density (Mg/m³)
11.5	1.84
Remarks	

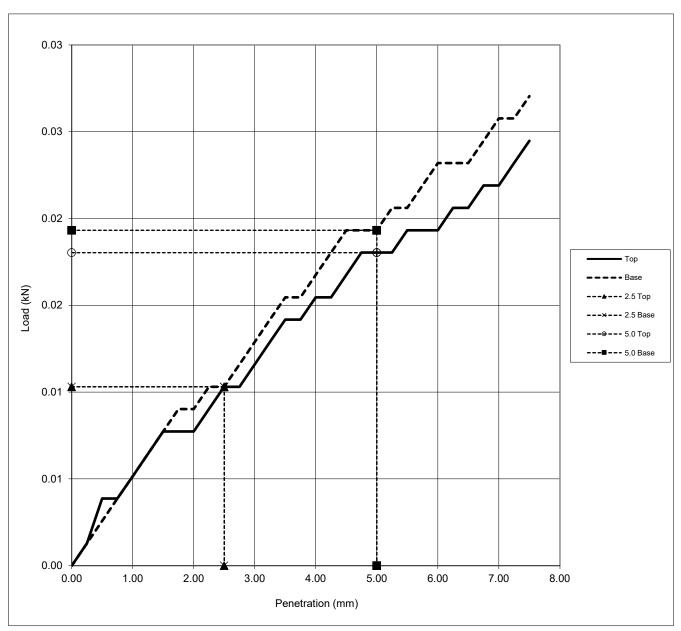
Borehole :	BH04
Sample :	В
Depth (m):	1.00

Tested in accordance with BS 1377 - 2: 2022



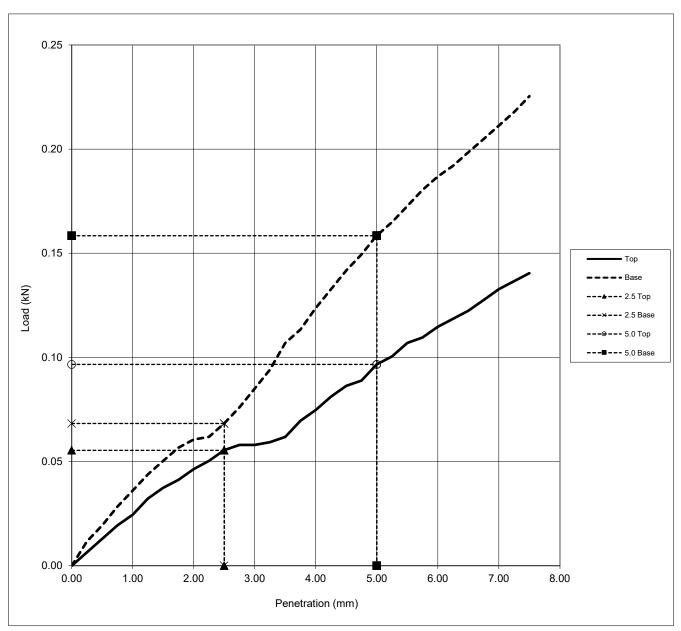
Water Content	23.3 %		Top Base		
Bulk Density	1.98 Mg/m ³	Water Content	23.6 23.0 %	Borehole	TP01
Dry Density	1.60 Mg/m ³	CBR (%) at 2.5mm	0.4 0.5 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	0.4 0.6 %	Depth (m)	0.60
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	3 %	Accepted CBR (%)	0.6

Remarks;			



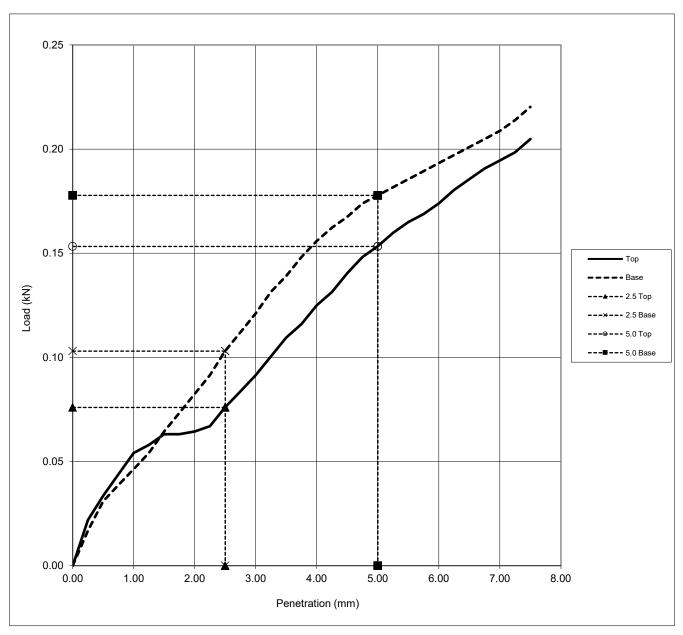
Water Content	22.3 %		Top Base		
Bulk Density	2.00 Mg/m ³	Water Content	22.1 22.5 %	Borehole	TP07
Dry Density	1.63 Mg/m ³	CBR (%) at 2.5mm	0.7 0.6 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	1.0 0.8 %	Depth (m)	1.00
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	1 %	Accepted CBR (%)	1.0

Remarks;			



Water Content	63.9 %		Top Base		
Bulk Density	1.48 Mg/m ³	Water Content	62.6 65.2 %	Borehole	TP17
Dry Density	0.90 Mg/m ³	CBR (%) at 2.5mm	0.1 0.1 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	0.1 0.1 %	Depth (m)	0.25
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	2 %	Accepted CBR (%)	0.1

Remarks;			



Water Content	22.4 %		Top Base		
Bulk Density	1.96 Mg/m ³	Water Content	22.1 22.8 %	Borehole	TP19
Dry Density	1.60 Mg/m ³	CBR (%) at 2.5mm	0.4 0.5 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	0.5 0.8 %	Depth (m)	0.60
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	1 %	Accepted CBR (%)	0.8

Remarks;			

Water Content	25.4 %		Top Base		
Bulk Density	1.94 Mg/m ³	Water Content	25.3 25.4 %	Borehole	TP25
Dry Density	1.55 Mg/m ³	CBR (%) at 2.5mm	0.6 0.8 %	Sample	В
Compactive Effort	2.5kg Rammer	CBR (%) at 5.0mm	0.8 0.9 %	Depth (m)	0.90
Surcharge Used	- kg	Curve Corrected	No	Lime Added (%)	-
Soaking Period	- days	Test Condition	Unsoaked	Cement Added (%)	-
Amount of swell	- mm	Material Removed	0 %	Accepted CBR (%)	0.9

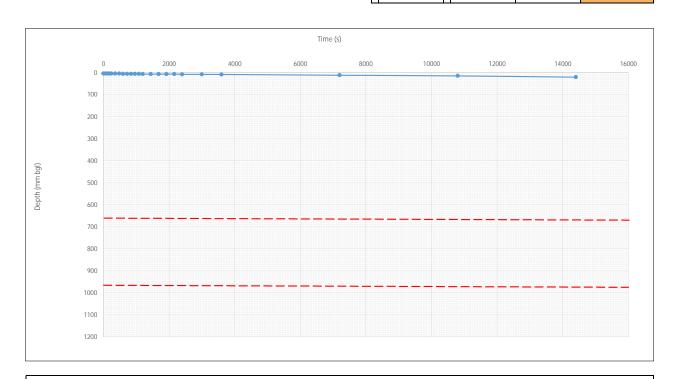
DETERMINATION OF CALIFORNIA BEARING RATIO (CBR)

CALCULATION SHEET - SOIL INFILTRATION RATE

Project:	Rigifa Thurso	
Job Number:	085449	
Author:	MTL	

Hole Ref.:	SA01
Test Date:	29/02/2024
Test No.:	1 of 1

3420 s	Time for head to fall from 75% to 25% effective depth (t_{75-25})
0.680 m ²	Internal surface area (50% effective depth) (a_{50})
0.035 m ³	Effective storage volume (V ₇₅₋₂₅)
0.16 m bgl	Effective storage depth (25% full)
ŭ	5 ,
0.08 m bgl	Effective storage depth (75% full)
0.16 m	Effective storage depth
0.20 m bgl	Water level at end of test
0.04 m bgl	Water level at start of test (approximate invert level)
0.44 m^2	Area of trial pit base
1.10 m	Depth (total) of trial pit
0.40 m	Width of trial pit
1.10 m	Length of trial pit


1.51E-05 m/s	Soil infiltration rate (f)

RAW DATA

Project:	Rigifa Thurso
Job Number:	085449
Author:	MTL

Hole Ref.:	SA01	
Test Date:	29/02/2024	
Test No.:	1 of 1	

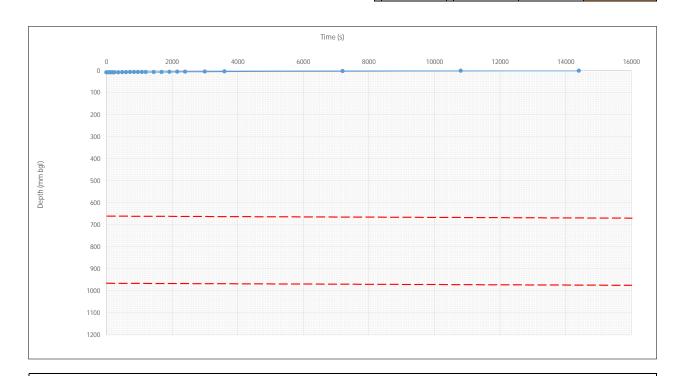
Time (min)	Time (s)	Depth (mm bgl)	Stratum
0	0	4	
1	60	4	
2	120	4	
3	180	4	
4	240	4	
6	360	4	
8	480	4	
10	600	5	
12	720	5	
14	840	5	
16	960	5	Firm Brown very
18	1080	5	gravelly sandy silty
20	1200	6	CLAY/FLAGSTONE
24	1440	6	
28	1680	6	
32	1920	6	
36	2160	6	
40	2400	7	
50	3000	7	
60	3600	8	
120	7200	11	
180	10800	14	
240	14400	20	

CALCULATION SHEET - SOIL INFILTRATION RATE

Project:	Rigifa Thurso
Job Number:	085449
Author:	MTL

Hole Ref.:	SA02
Test Date:	29/02/2024
Test No.:	1 of 1

3420 s	Time for head to fall from 75% to 25% effective depth (t ₇₅₋₂₅)
0.401 m ²	Internal surface area (50% effective depth) (a ₅₀)
-0.018 m ³	Effective storage volume (V ₇₅₋₂₅)
0.02 m bgl	Effective storage depth (25% full)
0.05 m bgl	Effective storage depth (75% full)
-0.07 m	Effective storage depth
o.oo magi	water rever at end or test
0.00 m bgl	Water level at end of test
0.07 m bgl	Water level at start of test (approximate invert level)
0.52 m ²	Area of trial pit base
1.25 m	Depth (total) of trial pit
0.40 m	Width of trial pit
1.30 m	Length of trial pit


_			
	-1 33F-05 m/s	Soil infiltration rate (f)	

RAW DATA

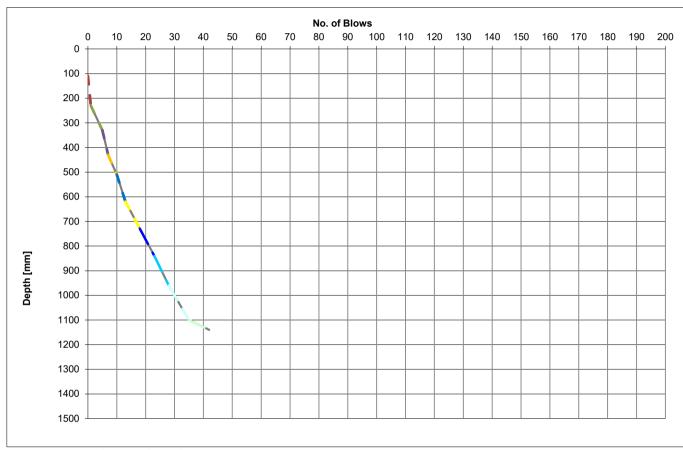
Project:	Rigifa Thurso
Job Number:	085449
Author:	MTL

Hole Ref.:	SA02
Test Date:	29/02/2024
Test No.:	1 of 1

Time (min)	Time (s)	Depth (mm bgl)	Stratum	
0	0	7		
1	60	7.4		
2	120	7.3		
3	180	7.3		
4	240	7.2		
6	360	7.1		
8	480	6.8		
10	600	6.6		
12	720	6.2		
14	840	6.1		
16	960	6.1	Firm Brown very	
18	1080	5.9	gravelly sandy silty	
20	1200	5.6	CLAY/FLAGSTONE	
24	1440	5.5		
28	1680	5.5		
32	1920	4.9		
36	2160	4.7		
40	2400	4.1		
50	3000	3.8		
60	3600	3.3		
120	7200	1.6		
180	10800	0.1		
240	14400	0		

CBR Data Interpretation

Method: CS 229- Data for pavement assessment Section 6 (Mar 2020)


Formula: Log10(CBR)=2.48 - 1.057 Log10(mm/blow)

Location CBR 01 - Rigifa

Coordinates E: 329309.283 N: 971254.353 Level (m AOD): 59.781

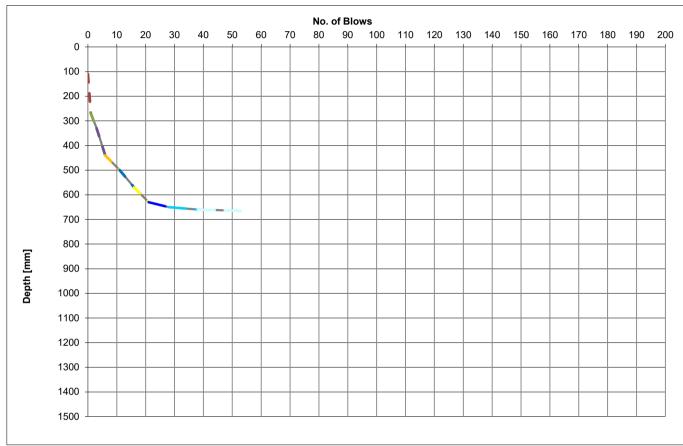
Date 21/02/2024

CBR RESULTS

TEST	Dep	th m	CBR Value
No	From	То	%
CBR 01	0.11	0.23	1.9
CBR 01	0.23	0.33	10.1
CBR 01	0.33	0.43	4.8
CBR 01	0.43	0.51	9.4
CBR 01	0.51	0.62	6.7
CBR 01	0.62	0.73	11.5
CBR 01	0.73	0.84	11.5
CBR 01	0.84	0.96	10.5
CBR 01	0.96	1.10	12.7
CBR 01	1.10	1.14	47.9

CBR Data Interpretation

Method: CS 229- Data for pavement assessment Section 6 (Mar 2020)


Formula: Log10(CBR)=2.48 - 1.057 Log10(mm/blow)

Location CBR 02 - Rigifa

Coordinates E: 329467.548 N: 971091.716 Level (m AOD): 72.178

Date 21/02/2024

CBR RESULTS

TEST	Dep	th m	CBR Value
No	From	То	%
CBR 02	0.11	0.27	1.4
CBR 02	0.27	0.33	8.3
CBR 02	0.33	0.44	6.7
CBR 02	0.44	0.50	21.8
CBR 02	0.50	0.57	18.6
CBR 02	0.57	0.63	21.8
CBR 02	0.63	0.65	99.6
CBR 02	0.65	0.66	302.0
CBR 02	0.66	0.67	964.5

Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: Rigifa Date: 13/03/2024

Job Number: #### Visit: 1

Client:Field.EnergyWeather:WeatherBarometric State:StableGround Conditions:Dry

Borehole Reference	Barometric Pressure	Flo	ow	Metl	nane		bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb	I/H	hr	9	6	9	6	%	ppm	ppm	m bgl	m bgl	Ф
		Max	SS	Max	SS	Max	SS						
BH01	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.5	0	0	DRY	1.00	
BH02	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.2	0	0	DRY	1.85	
BH03	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.4	0	0	DRY	1.90	
BH04	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.6	0	0	DRY	1.18	
BH05	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.8	0	0	DRY	1.99	
BH06	1002	0.0	0.0	0.0	0.0	0.1	0.1	21.1	0	0	DRY	1.80	
BH07	1002	0.0	0.0	0.0	0.0	0.1	0.1	20.6	0	0	DRY	1.55	

Notes	Logged by
	·

Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: Rigifa Date: 27/03/2024

Job Number:####Visit:2Client:Field.EnergyWeather:WetBarometric State:StableGround Conditions:Wet

Borehole Reference	Barometric Pressure	Flo	ow		hane		bon xide	Oxygen	Hydrogen Sulphide	Carbon Monoxide	Water Level	Borehole Base	Note
	mb	I/I	hr	9	6	9	6	%	ppm	ppm	m bgl	m bgl	Φ
		Max	SS	Max	SS	Max	SS						
BH01	988	0.0	0.0	0.0	0.0	0.1	0.1	20.30	0	0	DRY	1.00	
BH02	988	0.0	0.0	0.0	0.0	0.1	0.1	20.50	0	0	DRY	1.85	
BH03	988	0.0	0.0	0.0	0.0	0.1	0.1	20.20	0	0	DRY	1.90	
BH04	988	0.0	0.0	0.0	0.0	0.1	0.1	20.40	0	0	DRY	1.18	
BH05	988	0.0	0.0	0.0	0.0	0.1	0.1	20.90	0	0	DRY	1.99	
BH06	988	0.0	0.0	0.0	0.0	0.1	0.1	21.1	0	0	DRY	1.80	
BH07	988	0.0	0.0	0.0	0.0	0.1	0.1	20.4	0	0	DRY	1.55	
0													
0													
0													
0													
0													
0													
0													
0													

Notes	Logged by

Curtins

Merchant Exchange, 17-19 Whitworth Street West, Manchester, M1 5WG

Tel: 0161 236 2394 Fax: 0161 228 7902

GAS MONITORING LOG SHEET

Project: Rigifa **Date**: 09/04/2024

Job Number:####Visit:3Client:Field.EnergyWeather:WetBarometric State:SteadyGround Conditions:Wet

Borehole Reference	Barometric Pressure		ow 		hane	Dio	bon	Oxygen	Hydrogen Sulphide	Monoxide	Water Level	Borehole Base	Note
	mb		nr		6		% SS	%	ppm	ppm	m bgl	m bgl	
BH01	1010	0.0	SS 0.0	0.0	SS 0.0	0.1	0.1	20.8	0	0	DRY	1.00	
BH02	1010	0.0	0.0	0.0	0.0	0.1	0.1	20.9	0	0	DRY	1.85	
BH03	1010	0.0	0.0	0.0	0.0	0.1	0.1	20.5	0	0	DRY	1.90	
BH04	1010	0.0	0.0	0.0	0.0	0.1	0.1	20.8	0	0	DRY	1.18	
BH05	1010	0.0	0.0	0.0	0.0	0.1	0.1	21.0	0	0	DRY	1.99	
BH06	1010	0.0	0.0	0.0	0.0	0.1	0.1	21.1	0	0	DRY	1.80	
BH07	1010	0.0	0.0	0.0	0.0	0.1	0.1	20.6	0	0	DRY	1.55	
0													
0													
0													
0													
0													
0													
0													
0													

Notes	Logged by

Adopted Soil Generic Assessment Criteria Sandy loam with 1% SOM

Contaminants Metals						
Matala	Residential with	Residential without	Allotments	Commercial	Public open space	Public park
Motolo	home grown produce	home grown produce			near residential housing POS _{resi}	POS _{park}
	produce	produce			riodollig i Oo _{resi}	
	1.7	1.7	35	12	2.2	63
Beryllium Boron	1.7 290	11,000	<i>35</i> 45	240,000	2.2 21,000	46,000
Cadmium	10 ⁽¹³ 22	85 ⁽¹³ 150	1.8 <u>3.9</u>	230 410	120 <u>220</u>	560 <u>880</u>
Chromium III	910	910	1.6 <u>3.9</u> 18.000	8,600	1,500	33.000
Chromium VI	6 <u>21</u>	6 <u>21</u>	1.8 <u>170</u>	33 <u>49</u>	7,500 7.7 <u>21</u>	220 <u>250</u>
Lead	200	3 <u>21</u> 310	80	2,300	630	1,300
	<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Mercury (elemental)	1 170	1 240	26 80	26 3600	16 120	26 ⁽⁸ [<i>30</i>] <i>240</i>
Mercury (inorganic)						
Nickel	130 (10	180 ⁽¹⁰	53 ⁽¹¹	980 ⁽¹⁰	230	800
Vanadium	410	1200	91	9000	2000	5000
Copper	2400	7100	520	68000	12000	44000
Zinc Semi-Metals and non-metals	3700	40000	620	730000	81000	170000
	32 ⁽¹² <u>37</u>	0=(12 +0	43 ⁽¹² <u>49</u>	0.40(12.0.40	70.70	170 170
Arsenic	32 ⁽ 3/	35 ⁽¹² 40	43 \\-49	640 ⁽¹² <u>640</u>	<i>79</i> <u>79</u>	170 <u>170</u>
Antimony	250	<i>550</i> 600	100	7500	1500	3300
Selenium Inorganic chemicals	350	000	120	13000	1100	1800
Cyanide	34	34	34	34	34	34
Organic contaminants	1 37	UT	UT	UT	UT	
Aliphatic risk banded hydrocarbons - TPHCWG method						
EC _{>5} - EC ₆	42	42	730	3200	570000	95000
EC _{>6} - EC ₈	100	100	2300	7800	600000	150000
EC _{>8} - EC ₁₀	27	27	320	2000	13000	14000
EC ₁₀ -EC ₁₂	130	130	2200	9700	13000	21000
EC ₁₂ -EC ₁₆	1100	1100	11000	59000	13000	25000
EC _{>16} - EC ₃₅	65000	65000	260000	1600000	250000	450000
EC>35 - EC44	65000	65000	260000	1600000	250000	450000
Aromatic risk banded hydrocarbons - TPHCWG method	70	070	10	00000	50000	70000
EC>5 - EC7	70	370	13	26000	56000	76000
EC>7 - EC8	130	860	22	56000	56000	87000
EC _{>8} - EC ₁₀	34	47	8.6	3500	5000	7200
EC ₁₀ - EC ₁₂	74	250	13	16000	5000	9200
EC ₁₂ - EC ₁₆	140	1800	23	36000	5100	10000
EC _{>16} - EC ₂₁	260	1900	46	28000	3800	7600
EC _{>21} - EC ₃₅	1100	1900	370	28000	3800	7800
EC>35 - EC44	1100	1900	370	28000	3800	7800
Aliph + Arom EC >44-70	1600	1900	1200	28000	3800	7800
Aromatic	0.00	0.0	0.047	00	70	00
Benzene	80.0	0.3	0.017	28	72	90
Ethyl benzene	65	170	16	520 ⁽⁸ [17000]	520 ⁽⁸ [24000]	520 ⁽⁸ [17000]
Toluene	120	610	22	860 ⁽⁸ [59000]	860 ⁽⁸ [56000]	860 ⁽⁸ [87000]
Xylene ⁽⁹	41	53	28	480 ⁽⁸ [69000]	480 ⁽⁸ [41000]	480 ⁽⁸ [17000]
Phenol	180	310	66	760 ⁽¹⁴ (31000)	760 ⁽¹⁴ (10000)	760 ⁽¹⁴ (7600)
Polycyclic Aromatic Hydrocarbons (PAH)						
	2.3	2.3	4.1	190	4900	1200
Naphthalene	170	2900	28	83000	15000	29000
Acenaphthylene						
Acenaphthylene Acenaphthene	210	3000	34	84000	15000	29000
Acenaphthylene Acenaphthene Fluorene	170	2800	34 27	63000	9900	20000
Acenaphthylene Acenaphthene Fluorene Phenanthrene	170 95	2800 1300	34 27 15	63000 22000	9900 3100	20000 6200
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	170 95 2400	2800 1300 31000	34 27 15 380	63000 22000 520000	9900 3100 74000	20000 6200 150000
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	170 95 2400 280	2800 1300 31000 1500	34 27 15 380 52	63000 22000 520000 23000	9900 3100 74000 3100	20000 6200 150000 6300
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	170 95 2400 280 620	2800 1300 31000 1500 3700	34 27 15 380 52 110	63000 22000 520000 23000 54000	9900 3100 74000 3100 7400	20000 6200 150000 6300 15000
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	170 95 2400 280 620 7.2	2800 1300 31000 1500 3700 11	34 27 15 380 52 110 2.9	63000 22000 520000 23000 54000 170	9900 3100 74000 3100 7400 29	20000 6200 150000 6300 15000 49
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene	170 95 2400 280 620 7.2 15	2800 1300 31000 1500 3700 11 30	34 27 15 380 52 110 2.9 4.1	63000 22000 520000 23000 54000 170 350	9900 3100 74000 3100 7400 29 57	20000 6200 150000 6300 15000 49 93
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	170 95 2400 280 620 7.2 15 2.6	2800 1300 31000 1500 3700 11	34 27 15 380 52 110 2.9 4.1 0.99	63000 22000 520000 23000 54000 170 350 44	9900 3100 74000 3100 7400 29	20000 6200 150000 6300 15000 49
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	170 95 2400 280 620 7.2 15 2.6	2800 1300 31000 1500 3700 11 30 3.9	34 27 15 380 52 110 2.9 4.1 0.99	63000 22000 520000 23000 54000 170 350 44 1200	9900 3100 74000 3100 7400 29 57 7.1 190	20000 6200 150000 6300 15000 49 93 13 370
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	170 95 2400 280 620 7.2 15 2.6 77 2.2	2800 1300 31000 1500 3700 11 30 3.9 110 3.2	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97	63000 22000 520000 23000 54000 170 350 44 1200 35	9900 3100 74000 3100 7400 29 57 7.1 190 5.7	20000 6200 150000 6300 15000 49 93 13 370
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	170 95 2400 280 620 7.2 15 2.6 77 2.2	2800 1300 31000 1500 3700 11 30 3.9	34 27 15 380 52 110 2.9 4.1 0.99	63000 22000 520000 23000 54000 170 350 44 1200	9900 3100 74000 3100 7400 29 57 7.1 190	20000 6200 150000 6300 15000 49 93 13 370
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene	170 95 2400 280 620 7.2 15 2.6 77 2.2	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5	63000 22000 520000 23000 54000 170 350 44 1200 35 500	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82	20000 6200 150000 6300 15000 49 93 13 370 11
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene	170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5	63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57	20000 6200 150000 6300 15000 49 93 13 370 11 150
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(gli)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride	170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57	20000 6200 150000 6300 15000 49 93 13 370 11 150
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE)	170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320 0.00064 0.016	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31 360	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5 3900	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE) 1,1,1,2 Tetrachlorethane	170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320 0.00064 0.016 1.2	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31 360	34 27 15 380 52 1110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	63000 22000 520000 520000 54000 170 350 44 1200 35 500 3.5 3900	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400
Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123cd)pyrene Dibenzo(ah)anthracene Benzo(ghi)perylene Chlorinated Aliphatic Hydrocarbons Vinyl chloride Trichloroethene (TCE)	170 95 2400 280 620 7.2 15 2.6 77 2.2 27 0.24 320 0.00064 0.016	2800 1300 31000 1500 3700 11 30 3.9 110 3.2 45 0.31 360	34 27 15 380 52 110 2.9 4.1 0.99 37 0.97 9.5 0.14 290	63000 22000 520000 23000 54000 170 350 44 1200 35 500 3.5 3900	9900 3100 74000 3100 7400 29 57 7.1 190 5.7 82 0.57 640	20000 6200 150000 6300 15000 49 93 13 370 11 150 1.1 1400

Notes

- 1. All values above are in mg/kg
- 2. Numbers in bold are SGVs or GAC that are derived based on SGV report input parameters, numbers in italics are S4ULs, numbers in bold-italics are based on EIC/AGS/CL:AIRE numbers & input parameters and underlined numbers are C4SLs
- parameters and underlined numbers are C4SLs
 3. Soil organic matter (SOM) is assumed to be 1% DEFAULT VALUE
- 4. Soil type is assumed to be sandy loam <code>DEFAULT SOIL TYPE</code>
- 5. For residential, the building type is conservatively assumed to be a small terrace house where the development includes bungalows change to more conservative bungalow setting in computer model
- 6. For commercial, the building type is conservatively assumed to be a pre 1970s office building, where the proposed development comprises houses, flat with living spaces changes setting in model accordingly
- $7. \ For \ classrooms \ consider \ increasing \ the \ dust \ loading \ fator \ in \ the \ 'Soil \ and \ Building \ Data' \ of \ the \ CLEA \ 1.04 \ model \ from \ 50 \ to \ 100 \mu g \ m^{-3}$
- 8. Based on vapour saturation limt as suggested by EA / [] model value $\,$
- 9. Lowest of o-, m- and p-xylene
- 10. Based on comparison of inhalation exposure with inhalation TDI
- 11. Based on comparison of oral, dermal, and inhalation exposure with the oral TDI
- 12. Based on a comparison of oral and dermal soil exposure with oral Index Dose only
- 13. Averaged over and based on lifetime exposure
- 14. Based on critical concentration for skin irritation in humans arising from contact with phenol in aqueous solution (number in brackets based on health effects following long term exposure for illustration)
- 15. NA: Not applicable

Appendix D – Qualitative Risk Assessment Rationale

The site-specific risk assessment, presented in this report, follows the principle of establishing whether there is a viable linkage between a contaminant source to a potential receptor, via an exposure pathway.

The risk assessment corresponds with the total site area and incorporates both descriptive (qualitative) and, where available, numerical (quantitative) lines of evidence.

Risk assessment is the process of collating known information on a hazard or set of hazards to estimate actual or potential risk to receptors. The receptor may be humans, a water resource, a sensitive local ecosystem, or future construction materials. Receptors can be connected to the source by one or several exposure pathways such as direct contact for example. Risks are managed by isolating the receptor or intercepting the exposure pathway or by isolating or removing the hazard.

Without the three essential components of a source, pathway, and receptor there can be no risk. Therefore, the presence of contaminant source on a site does not necessarily mean there is a risk.

The risk assessment considers the likelihood of a particular event taking place (accounting for the presence of the source and receptor and the viability of the exposure pathway) in conjunction with the severity of the potential consequence (accounting for the potential severity of the hazard and the sensitivity of the receptor).

In the risk assessment the consequence of the hazard has been classified as severe, medium, mild, or minor and the probability (likelihood) of the circumstances occurring classified as high likelihood or low likelihood or unlikely.

The consequences and probabilities are subsequently cross correlated to give a qualitative estimation of the risk using Department of the Environment risk classifications as detailed in the table below and as referenced in CIRIA C552.

			Conse	quence	
		Severe	Medium	Mild	Minor
\ =	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk
Probability (Likelihood)	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk
Proba- ikeli	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk
T =	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk

085449 Rigifa, Thurso

Phase 2 Ground Investigation Report

In accordance with DoE guidance, the following categorisation of **consequence** has been developed.

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property. A short-term risk to an ecosystem or organisation forming part of such ecosystem.	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to Human Health. Pollution of sensitive water resources. A significant change in an ecosystem or organism forming part of such ecosystem.	Concentration of a contaminant from site exceeds the generic or site-specific assessment criteria. Leaching of contaminants from a site to a Principal or Secondary A aquifer. Death of a species within a designated nature reserve. Lesser toxic and asphyxiate effects
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures, and services. Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater (Inc. Secondary B aquifers). Damage to building rendering it unsafe to occupy (e.g. foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing, etc). Easily repairable effects of damage to buildings, structures, and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discoloration of concrete.

In accordance with DoE guidance, the following categorisation of probability has been developed.

Classification	Definition
High Likelihood	There is a pollution linkage and an event that either appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution.
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and over the long term.
Low Likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place and is less likely in the shorter term.
Unlikely	There is a pollution linkage, but circumstances are such that it is improbable that an event would occur even in the very long term.

In accordance with DoE guidance, the following categorisation of risk has been developed.

Classification	Definition
Very High Risk	There is a <i>high probability</i> that <i>severe harm</i> could arise to a designated receptor from an identified hazard at the site without appropriate further action.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate further action.
Moderate Risk	It is possible that without appropriate further action harm could arise to a designated receptor. It is relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely that such harm would be relatively mild.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard. It is likely that, at worst, if any harm was realised any effects would be mild.
Negligible Risk	The presence of an identified hazard does not give rise to the potential to cause harm to a designated receptor.

The term 'risk' in this instance refers to the risk that the source, pathway, receptor linkage for a given source of contamination is complete. It does not refer to immediate risk to individuals or features present on the site from potential contaminants and is intended to be used as a tool to assess the necessity of further investigation.